

Generated and Pseudo Content guided Prototype Refinement for Few-shot Point Cloud Segmentation

Lili Wei^{1,2}, Congyan Lang^{1,2}*, Ziyi Chen^{1,2}, Tao Wang^{1,2}, Yidong Li^{1,2}, Jun Liu³

¹Beijing Jiaotong University

²Key Laboratory of Big Data & Artificial Intelligence in Transportation, Ministry of Education

³Lancaster University

Introduction

Motivation

Challenge: In few-shot 3D point cloud semantic segmentation (FS-3DSeg), existing prototype-based methods face issues with *low prototype quality* due to:

- Semantic information constraints Limited support point clouds contain only partial and incomplete object information, lacking intra-class diversity and inter-class discrimination.
- Class information bias Intra-class object variations and feature distribution gaps between query and support point clouds.

Consequently, vanilla 3D prototypes lack comprehensive class information and are unsuitable for guiding query segmentation.

Our goal: We aim to compensate for the lack of semantics in 3D support set to generate comprehensive and reliable query-specific prototypes for accurately segmenting the query point cloud.

Introduction

• Contribution

- We propose GPCPR, a novel end-to-end FS-3DSegframework that enhances prototype quality by simultaneously integrating LLM-generated content and reliable query context to generate query-specific prototypes. To the best of our knowledge, this is the first time leveraging LLM's capabilities to segment novel classes in FS-3DSeg.
- We design a series of novel modules, including the Generated Content-guided Prototype Refinement (GCPR) module and the Pseudo Query Context-guided Prototype Refinement (PCPR) module, to facilitate the prototype refinement process. Additionally, we design a dual-distillation regularization term to further mutually enhance the refinement.
- Extensive experiments demonstrate the superiority of our method, notably exceeding state-of-the-art methods by up to 12.10% and 13.75% on S3DIS and ScanNet datasets, respectively.

• Framework

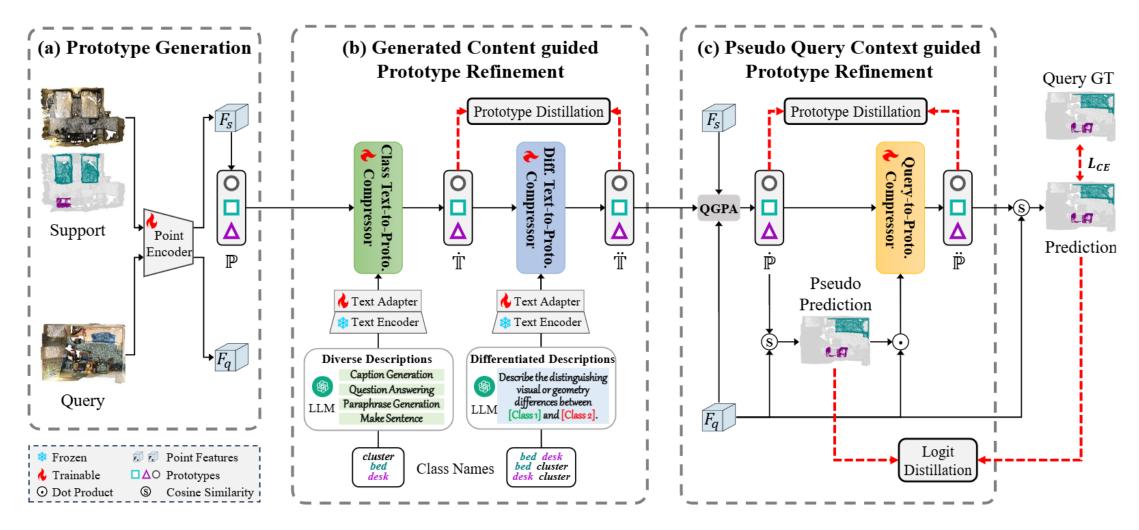


Figure 1: GPCPR framework overview.

• LLM-driven Generated Content-guided Prototype Refinement

LLM-driven Content Generation

- ① Caption Generation: "Describe a point cloud of a [CLASS] in one sentence."
- ② Question Answering: "What is a [CLASS] point cloud like?"
- ③ Paraphrase Generation: "Generate a synonym: A point cloud of a [CLASS]."
- (4) Make Sentence: "Make a sentence with words: point cloud, [CLASS], obscure. "

Differentiated Class Descriptions

"Describe the distinguishing visual or geometry differences between the point clouds of [CLASS 1] and [CLASS 2] in pairs of sentences."

Text-To-Prototype Compressors

(1) Class text-to-prototype compressor: $\dot{\mathbb{T}} = {\{\dot{\mathcal{T}}^n\}_{n=0}^N}$

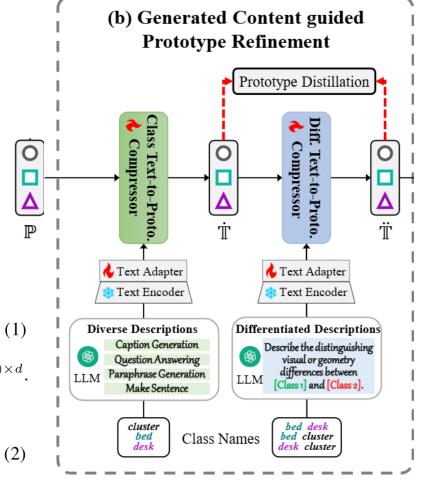
$$\dot{\mathcal{T}}^n = \mathcal{P}^n + softmax (\mathbf{Q}_1 \mathbf{K}_1^{\top}) \mathbf{V}_1, \quad n \in \{0, ..., N\},$$

where $\mathbf{Q_1} = \mathcal{P}^n W_{q1} \in \mathbb{R}^{1 \times d'}$, $\mathbf{K_1} = \mathbf{E}^n W_{k1} \in \mathbb{R}^{(4 \times N_{div}) \times d'}$ and $\mathbf{V_1} = \mathbf{E}^n W_{v1} \in \mathbb{R}^{(4 \times N_{div}) \times d}$.

② Differentiated text-to-prototype compressor: $\ddot{\mathbb{T}} = \{\ddot{\mathcal{T}}^n\}_{n=0}^N$

$$\ddot{\mathcal{T}}^n = \dot{\mathcal{T}}^n + softmax (\mathbf{Q}_2 \mathbf{K}_2^{\top}) \mathbf{V}_2, \quad n \in \{0, ..., N\},$$

where $\mathbf{Q_2} = \dot{\mathcal{T}}^n W_{q2} \in \mathbb{R}^{1 \times d'}$, $\mathbf{K_2} = \mathbf{E}^{n'} W_{k2} \in \mathbb{R}^{N_{diff} \times d'}$, and $\mathbf{V_2} = \mathbf{E}^{n'} W_{v2} \in \mathbb{R}^{N_{diff} \times d}$.



- Pseudo Query Context-guided Prototype Refinement
 - Pseudo-Query Context Generation
 - ① **QGPA:** rectify prototypes to query feature channel distribution

$$\dot{\mathbb{P}} = \{\dot{\mathbb{P}}^i\}_{i=1}^T \in \mathbb{R}^{T \times (N+1) \times d}$$

$$\dot{\mathcal{P}}^{i,n} = \ddot{\mathcal{T}}^n + softmax (\mathbf{Q}_{\mathbf{3}} \mathbf{K}_{\mathbf{3}}^{\top}) \mathbf{V}_{\mathbf{3}}, \quad n \in \{0, ..., N\}, i \in \{1, ..., T\},$$

where $\mathbf{Q_3} = \mathbf{F}_q^{i^{\top}} W_{q3} \in \mathbb{R}^{d \times M'}$, $\mathbf{K_3} = \mathbf{F}_s^{n^{\top}} W_{k3} \in \mathbb{R}^{d \times M'}$, and $\mathbf{V_3} = \ddot{\mathcal{T}}^n W_{v3} \in \mathbb{R}^{1 \times d}$. $\mathbf{F}_s^n \in \mathbb{R}^{M \times d}$

② Extract class-specific pseudo query context:

predict pseudo logits and mask query features with pseudo masks

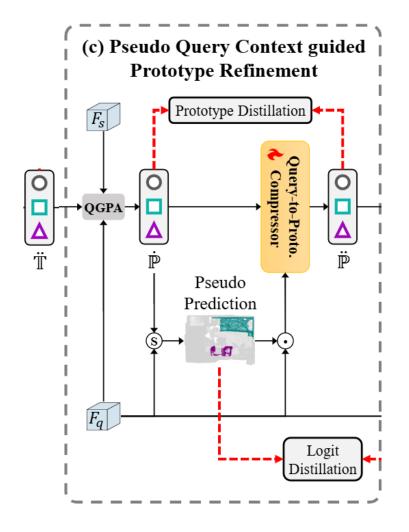
 $\dot{\mathbf{F}}_q = {\{\dot{\mathbf{F}}_q^n\}_{n=0}^N, \dot{\mathbf{F}}_q^n \in \mathbb{R}^{(T \times M) \times d}}$

Query-To-Prototype Compressor

$$\ddot{\mathbb{P}} = \{\ddot{\mathbb{P}}^i\}_{i=1}^T \in \mathbb{R}^{T \times (N+1) \times d}$$

$$\ddot{\mathcal{P}}^{i,n} = \dot{\mathcal{P}}^{i,n} + softmax (\mathbf{Q_4K_4}^{\top}) \mathbf{V_4}, \qquad n \in \{1, ..., N\}, \quad i \in \{1, ..., T\},$$

where $\mathbf{Q}_4 = \dot{\mathcal{P}}^{i,n} W_{q4} \in \mathbb{R}^{1 \times d'}, \mathbf{K}_4 = \dot{\mathbf{F}}_q^n W_{k4} \in \mathbb{R}^{(T \times M) \times d'}, \mathbf{V}_4 = \dot{\mathbf{F}}_q^n W_{v4} \in \mathbb{R}^{(T \times M) \times d}.$



(3)

(4)

• Dual-Distillation Regularization

Prototype Distillation

Goal: achieving mutually beneficial and bi-directional optimization of multi-stage prototypes

- ① **Student:** early-stage prototypes
- ② **Teacher:** deep-stage prototypes

$$\mathcal{L}_{TP} = KL(\dot{\mathbb{T}}||\ddot{\mathbb{T}}), \quad \mathcal{L}_{QP} = KL(\dot{\mathbb{P}}||\ddot{\mathbb{P}}), \tag{5}$$

Pseudo Prediction Distillation

Goal: improving the accuracy and quality of pseudo masks

- (1) **Student:** pseudo logits
- ② Teacher: final predicted logits

$$\mathcal{L}_{QM} = KL(\dot{\mathbf{L}}_q || \hat{\mathbf{L}}_q).$$
(6)

• Objective

$$\mathcal{L}_{SEG} = \mathcal{L}_{CE}(\dot{\mathbf{M}}_q, \hat{\mathbf{M}}_q). \tag{7}$$

$$\mathcal{L}_{total} = \mathcal{L}_{SEG} + \lambda \times (\mathcal{L}_{TP} + \mathcal{L}_{QP} + \mathcal{L}_{QM}).$$
(8)

• Comparison With State-of-the-Art Methods

	2-way						3-way					
Method	1-shot			5-shot		1-shot			5-shot			
	S^0	S^1	mean	S^0	S^1	mean	S^0	S^1	mean	S^0	S^1	mean
ProtoNet [39]	48.39	49.98	49.19	57.34	63.22	60.28	40.81	45.07	42.94	49.05	53.42	51.24
AttMPTI [39]	53.77	55.94	54.86	61.67	67.02	64.35	45.18	49.27	47.23	54.92	56.79	55.86
BFG [17]	55.60	55.98	55.79	63.71	66.62	65.17	46.18	48.36	47.27	55.05	57.80	56.43
SCAT [36]	54.92	56.74	55.83	64.24	69.03	66.63	-	-	-	-	-	-
QGPNet [10]	56.30	57.62	56.96	65.34	69.01	67.17	47.00	50.12	48.56	55.80	58.54	57.17
2CBR [41]	55.89	61.99	58.94	63.55	67.51	65.53	46.51	53.91	50.21	55.51	58.07	56.79
QGE [20]	58.85	60.29	59.57	66.56	79.46	73.01	-	-	-	-	-	-
QGPA [9]	59.45	66.08	62.76	65.40	70.30	67.85	48.99	56.57	52.78	61.27	60.81	61.04
DPA [16]	66.08	74.30	70.19	71.10	77.03	74.07	50.67	59.53	55.10	64.52	63.34	63.93
Ours	74.04	77.44	75.74	76.65	78.22	77.44	62.77	70.57	66.67	67.49	74.68	71.09

Table 1: Performance on S3DIS dataset using mean-IoU metric (%).

	2-way						3-way					
Method	1-shot			5-shot		1-shot			5-shot			
	S^0	S^1	mean	S^0	S^1	mean	S^0	S^1	mean	S^0	S^1	mean
ProtoNet [39]	33.92	30.95	32.44	45.34	42.01	43.68	28.47	26.13	27.30	37.36	34.98	36.17
AttMPTI [39]	42.55	40.83	41.69	54.00	50.32	52.16	35.23	30.72	32.98	46.74	40.80	43.77
BFG [17]	42.15	40.52	41.34	51.23	49.39	50.31	34.12	31.98	33.05	46.25	41.38	43.82
SCAT [36]	45.24	45.90	45.57	55.38	57.11	56.24	-	-	-	-	-	-
QGPNet [10]	44.63	42.18	43.40	54.75	51.81	53.28	37.86	34.50	36.18	47.45	42.74	45.09
2CBR [41]	50.73	47.66	49.20	52.35	47.14	49.75	47.00	46.36	46.68	45.06	39.47	42.27
QGE [20]	43.10	46.79	44.95	51.91	57.21	54.56	-	-	-	-	-	-
QGPA 9	57.08	55.94	56.51	64.55	59.64	62.10	55.27	55.60	55.44	59.02	53.16	56.09
DPA [16]	62.75	63.04	62.90	67.19	64.62	65.91	61.97	61.72	61.85	66.13	64.67	65.40
Ours	75.94	71.92	73.93	78.42	78.37	78.40	70.00	66.61	68.31	76.73	68.63	72.68

Table 2: Performance on ScanNet dataset using mean-IoU metric (%).

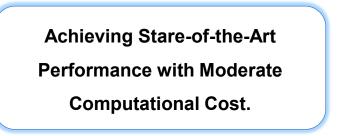
• Computational Complexity

Phase	S3DIS	ScanNet
Description Generation: gpt-3.5-turbo	30.23 min	67.15 min
Text Feature Extraction: CLIP rn50	10.95 s	17.79 s
Total	30.41 min	67.45 min

Table 3: Offline time cost

Meth	ods	#Params	FLOPs (G)	FPS	Inference Time (ms)	S3DIS	ScanNet
attMI	PTI	357.82K	152.65	1.47	678.67	54.86	41.69
QGF	PA	2.79M	16.30	38.68	25.85	62.76	56.51
DP	A	4.85M	15.49	32.35	30.91	70.19	62.90
Our	ſS	4.22M	18.96	20.57	48.61	75.74	73.93

Table 4: Online time cost



• Qualitative results

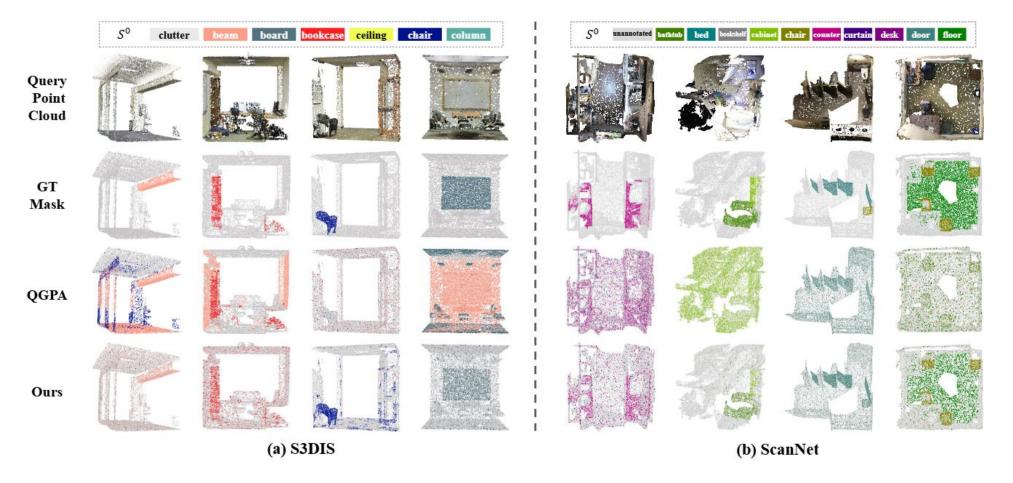
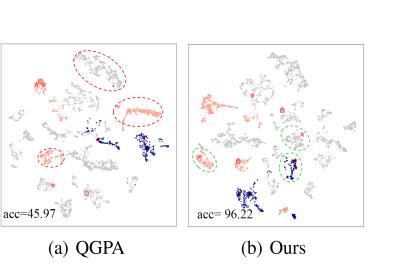


Figure 2: Qualitative results.

• Ablation Study

G	CPR	PCPR	DD loss			2-way 1-shot		
D	D^{\prime}	ICIK	\mathcal{L}_{TP}	\mathcal{L}_{QP}	\mathcal{L}_{QM}	S^0	S^1	mean
						58.96	63.08	61.02
		1				65.01	74.39	69.70
1						66.06	69.03	67.55
	~					66.71	70.18	68.45
1	1					68.57	74.71	71.64
1	\checkmark	1				68.68	75.73	72.21
~	~	1	1			69.36	75.85	72.61
1	1	1		1		71.09	76.09	73.59
1	1	1			1	71.07	76.47	73.77
1	1	1	1	1	1	74.04	77.44	75.74

Table 5: Ablation study of key components.



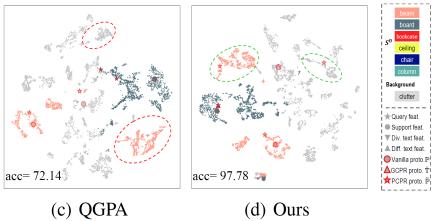


Figure 3: Visualization of feature distribution and prototype distribution.

• Ablation Study

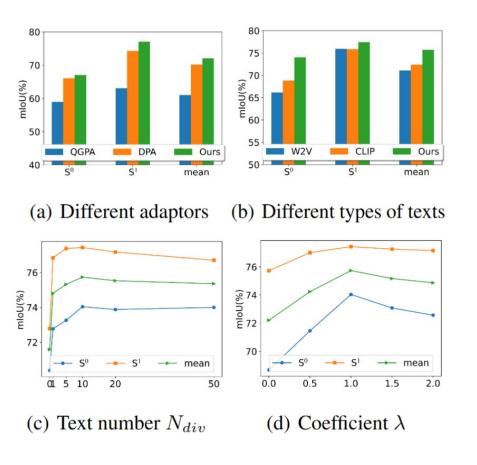


Figure 4: Ablation study of modules and hyper-parameters.

		-	
Methods	S^0	S^1	mean
attMPTI	53.77	55.94	54.86
QGPA	59.45	66.08	62.76
DPA	66.08	74.30	70.19
Ours (gpt-40-mini)	71.64	76.11	73.88
Ours (gpt-3.5-turbo)	74.04	77.44	75.74

Table 6: Effects of different LLMs.

