Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement

> Jeremiah Birrell (Texas State University) Reza Ebrahimi (University of South Florida) Rouzbeh Behnia (University of South Florida) Jason Pacheco (University of Arizona)

> > NeurIPS 2024

 Ω

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by an attacker. Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is public.

Differential Privacy:

- \triangleright Facilitates provably private training of ML models.
- \triangleright Modern formulation built on the pioneering work of Cynthia Dwork et al.²

1 **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.**

2 **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-0-0)p[hy,](#page-2-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)** QQ

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by **an attacker.** Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is

Differential Privacy:

- \triangleright Facilitates provably private training of ML models.
- \triangleright Modern formulation built on the pioneering work of Cynthia Dwork et al.²

1 **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.**

2 **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-1-0)p[hy,](#page-3-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)** QQ

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by an attacker. Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is

Differential Privacy:

- \triangleright Facilitates provably private training of ML models.
- \triangleright Modern formulation built on the pioneering work of Cynthia Dwork et al.²

 QQ

1 **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.** 2 **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-2-0)p[hy,](#page-4-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)**

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by an attacker. Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is public.

Differential Privacy:

- \triangleright Facilitates provably private training of ML models.
- \triangleright Modern formulation built on the pioneering work of Cynthia Dwork et al.²

 QQ

1 **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.** 2 **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-3-0)p[hy,](#page-5-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)**

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by an attacker. Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is public.

Differential Privacy:

- \blacktriangleright Facilitates provably private training of ML models.
- **Modern formulation built on the pioneering work of Cynthia** Dwork et al.²

1 **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.**

2 **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-4-0)p[hy,](#page-6-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)** QQ

Privacy leakage: Machine learning (ML) models are known to be susceptible to privacy leakage attacks. Information about the training set can often be extracted from a trained model by an attacker. Notably, sensitive data can be obtained by membership inference attacks¹.

This is a big problem if the data is sensitive and the model is public.

Differential Privacy:

- ▶ Facilitates provably private training of ML models.
- ▶ Modern formulation built on the pioneering work of Cynthia Dwork et al.²

¹ **R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.**

² **C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Crypt[ogra](#page-5-0)p[hy,](#page-7-0) [\(2](#page-0-0)[0](#page-1-0)[06](#page-6-0)[\).](#page-7-0)** QQ

Rényi-DP

Rényi-DP¹: A random algorithm $\mathcal M$ has (ϵ, α) -RDP under the dataset adjacency relation \simeq if

$$
\sup_{D,D':D\simeq D'} R_\alpha(\mathcal{M}(D)\|\mathcal{M}(D'))\leq \epsilon
$$

Rényi Divergences of order $\alpha > 1$:

$$
R_{\alpha}(Q||P) := \frac{1}{\alpha - 1} \log E_P[(dQ/dP)^{\alpha}]
$$

¹ **I. Mironov, Proc. IEEE Comp. Security Foundations Symp. (CSF), ([201](#page-6-0)7)** QQQ

Rényi-DP¹: A random algorithm $\mathcal M$ has (ϵ, α) -RDP under the dataset adjacency relation \simeq if

$$
\sup_{D,D':D\simeq D'} R_\alpha(\mathcal{M}(D)\|\mathcal{M}(D'))\leq \epsilon
$$

Rényi Divergences of order $\alpha > 1$:

$$
R_{\alpha}(Q||P) := \frac{1}{\alpha-1} \log E_P[(dQ/dP)^{\alpha}]
$$

¹ **I. Mironov, Proc. IEEE Comp. Security Foundations Symp. (CSF), ([201](#page-7-0)7)** QQQ

Differentially private SGD:

$$
\theta_{t+1} = \theta_t - \eta_t \frac{1}{|B|} \sum_{d \in B_t} \text{Clip}[\nabla \mathcal{L}_d(\theta_t)] + \sigma_n N(0, I)
$$

There are multiple ways to form minibatches, *B^t* .

Poisson subsampling: Minibatches are formed by iid Bernoulli random variables (chosen sampling probability *q*) which decide whether each sample is included in the minibatch or not.

RDP bounds on SGD with Poisson subsampling: First bounds obtained by Abadi et al.¹ and Mironov et al.²

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L., Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, (2016)

2 **Mironov, I., Talwar, K., and Zhang, L., arXiv:1908.10530, (2019).**メロトス 伊 トメ ミトメ ミト QQ

Differentially private SGD:

$$
\theta_{t+1} = \theta_t - \eta_t \frac{1}{|B|} \sum_{d \in B_t} \text{Clip}[\nabla \mathcal{L}_d(\theta_t)] + \sigma_n N(0, I)
$$

There are multiple ways to form minibatches, *B^t* .

Poisson subsampling: Minibatches are formed by iid Bernoulli random variables (chosen sampling probability *q*) which decide whether each sample is included in the minibatch or not.

RDP bounds on SGD with Poisson subsampling: First bounds obtained by Abadi et al.¹ and Mironov et al.²

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L., Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, (2016)

2 **Mironov, I., Talwar, K., and Zhang, L., arXiv:1908.10530, (2019).** $(0,1)$ $(0,1)$ QQ

Differentially private SGD:

$$
\theta_{t+1} = \theta_t - \eta_t \frac{1}{|B|} \sum_{d \in B_t} \text{Clip}[\nabla \mathcal{L}_d(\theta_t)] + \sigma_n N(0, I)
$$

There are multiple ways to form minibatches, *B^t* .

Poisson subsampling: Minibatches are formed by iid Bernoulli random variables (chosen sampling probability *q*) which decide whether each sample is included in the minibatch or not.

RDP bounds on SGD with Poisson subsampling: First bounds obtained by Abadi et al.¹ and Mironov et al.²

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L., Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, (2016)

2 **Mironov, I., Talwar, K., and Zhang, L., arXiv:1908.10530, (2019).** $($ \Box $)$ $($ \Box $)$ $\mathcal{A} \times \mathcal{B} \rightarrow \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{B}$ QQQ

Differentially private SGD:

$$
\theta_{t+1} = \theta_t - \eta_t \frac{1}{|B|} \sum_{d \in B_t} \text{Clip}[\nabla \mathcal{L}_d(\theta_t)] + \sigma_n N(0, I)
$$

There are multiple ways to form minibatches, *B^t* .

Poisson subsampling: Minibatches are formed by *iid Bernoulli* random variables (chosen sampling probability *q*) which decide whether each sample is included in the minibatch or not.

RDP bounds on SGD with Poisson subsampling: First bounds obtained by Abadi et al.¹ and Mironov et al.²

¹ **Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L., Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, (2016)**

² **Mironov, I., Talwar, K., and Zhang, L., arXiv:1908.10530, (2019).4 ロト 4 同** QQ

Disadvantage of Poisson subsampling: Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with fixed-size subsampling obtained by Wang et al.¹

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**

Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), ar[Xiv:](#page-12-0)2[408](#page-14-0)[.1](#page-12-0)[04](#page-13-0)[5](#page-17-0)[6.](#page-18-0) QQQ

Disadvantage of Poisson subsampling: Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with fixed-size subsampling obtained by Wang et al.¹

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**

Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), ar[Xiv:](#page-13-0)2[408](#page-15-0)[.1](#page-12-0)[04](#page-13-0)[5](#page-17-0)[6.](#page-18-0) QQQ

Disadvantage of Poisson subsampling: Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with fixed-size subsampling obtained by Wang et al.¹

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**

Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), ar[Xiv:](#page-14-0)2[408](#page-16-0)[.1](#page-12-0)[04](#page-13-0)[5](#page-17-0)[6.](#page-18-0) QQQ

Disadvantage of Poisson subsampling: Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with fixed-size subsampling obtained by Wang et al.¹

We obtain **tighter RDP bounds** for fixed-size subsampled DP-SGD using a Taylor expansion method, with precise bounds on the expansion remainder terms [2].

Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), ar[Xiv:](#page-15-0)2[408](#page-17-0)[.1](#page-12-0)[04](#page-13-0)[5](#page-17-0)[6.](#page-18-0) QQQ

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**

Disadvantage of Poisson subsampling: Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with fixed-size subsampling obtained by Wang et al.¹

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**

² **Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), ar[Xiv:](#page-16-0)2[408](#page-18-0)[.1](#page-12-0)[04](#page-13-0)[5](#page-17-0)[6.](#page-18-0)** QQ

Assuming q < 1 *(sampling probability), T -step fixed-size subsampled (without replacement) DP-SGD has* (α, ϵ[0,*T*] (α))*-RDP under replace-one adjacency, where*

$$
\epsilon_{[0,T]}(\alpha) \leq \sum_{t=0}^{T-1} \frac{1}{\alpha-1} \log \left[1 + q^2 \alpha (\alpha - 1) \left(e^{4/\sigma_t^2} - e^{2/\sigma_t^2}\right) + O(q^3)\right]
$$

- 1. We provide computatable bounds on the $O(q^3)$ term.
- 2. Our result improves on the RDP bound of Wang et al.² by approximately a factor of 4 and is close to the theoretical lower bound² in practice.

1 **Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.** ²**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**メロトス 伊 トメ ミトメ ミト QQQ

Assuming q < 1 *(sampling probability), T -step fixed-size subsampled (without replacement) DP-SGD has* $(\alpha,\epsilon_{\llbracket 0, T\rrbracket }(\alpha))$ -RDP under replace-one adjacency, where

$$
\epsilon_{[0,T]}(\alpha) \leq \sum_{t=0}^{T-1} \frac{1}{\alpha-1} \log\left[1 + q^2\alpha(\alpha-1)\left(e^{4/\sigma_t{}^2} - e^{2/\sigma_t{}^2}\right) + O(q^3)\right]
$$

1. We provide computatable bounds on the $O(q^3)$ term.

2. Our result improves on the RDP bound of Wang et al.² by approximately a factor of 4 and is close to the theoretical lower bound² in practice.

1 **Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.** ²**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**メロトス 伊 トメ ミトメ ミト QQQ

Assuming q < 1 *(sampling probability), T -step fixed-size subsampled (without replacement) DP-SGD has* $(\alpha,\epsilon_{\llbracket 0, T\rrbracket }(\alpha))$ -RDP under replace-one adjacency, where

$$
\epsilon_{[0,T]}(\alpha) \leq \sum_{t=0}^{T-1} \frac{1}{\alpha-1} \log\left[1 + q^2\alpha(\alpha-1)\left(e^{4/\sigma_t{}^2}-e^{2/\sigma_t{}^2}\right) + O(q^3)\right]
$$

- 1. We provide computatable bounds on the $O(q^3)$ term.
- 2. Our result improves on the RDP bound of Wang et al.² by approximately a factor of 4 and is close to the theoretical lower bound² in practice.

1 **Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.** ²**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)**メロトス 伊 トメ ミトメ ミト QQQ

Assuming q < 1 *(sampling probability), T -step fixed-size subsampled (without replacement) DP-SGD has* $(\alpha,\epsilon_{\llbracket 0, T\rrbracket }(\alpha))$ -RDP under replace-one adjacency, where

$$
\epsilon_{[0,T]}(\alpha) \leq \sum_{t=0}^{T-1} \frac{1}{\alpha-1} \log \left[1 + q^2 \alpha (\alpha - 1) \left(e^{4/\sigma_t{}^2} - e^{2/\sigma_t{}^2}\right) + O(q^3)\right]
$$

- 1. We provide computatable bounds on the $O(q^3)$ term.
- 2. Our result improves on the RDP bound of Wang et al.² by approximately a factor of 4 and is close to the theoretical lower bound² in practice.

¹ **Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.**

²**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)** QQ

Comparison with Wang et al.

Figure: Comparison of our FS_{woR}-RDP bounds under replace-one adjacency for various choices of *m* with the upper and lower bounds from Wang et al.¹ We used $\sigma_t = 6$, $|B| = 120$, and $|D| = 50,000$.

¹**Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)** $($ \Box $)$ $($ \Box $)$ Ω

Comparison with Poisson Subsampling on CIFAR10

Figure: Comparing privacy guarantees of FS_{woB} -RDP with Wang et al. and Poisson Subsampled RDP (**left**). Comparing FSwoR-RDP performance against Poisson subsampled RDP (**right**). We used $\sigma_t = 6$, $C = 3$, $|B| = 120$, $|D| = 50$, 000, and $lr = 1e - 3$.

Memory Usage Comparison

Figure: Comparing memory usage of FS-RDP with other Opacus privacy accountants in each training epoch. We used $|B| = 120$, and $|D| = 50,000.$

For further details see: Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement, J. Birrell, R. Ebrahimi, R. Behnia, J. Pacheco, NeurIPS (2024)

Preprint: arXiv:2408.10456

 Ω