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Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Data Privacy violations in Machine Learning
Privacy leakage: Machine learning (ML) models are known to
be susceptible to privacy leakage attacks. Information about
the training set can often be extracted from a trained model by
an attacker. Notably, sensitive data can be obtained by
membership inference attacks1.

This is a big problem if the data is sensitive and the model is
public.

Differential Privacy:
▶ Facilitates provably private training of ML models.
▶ Modern formulation built on the pioneering work of Cynthia

Dwork et al.2
1

R. Shokri, M. Stronati, C. Song, V. Shmatikov, 2017 IEEE Symposium on Security and Privacy.
2

C. Dwork, F. McSherry, K. Nissim and A. D. Smith, Theory of Cryptography, (2006).



Rényi-DP

Rényi-DP1: A random algorithm M has (ϵ, α)-RDP under the
dataset adjacency relation ≃ if

sup
D,D′:D≃D′

Rα(M(D)∥M(D′)) ≤ ϵ

Rényi Divergences of order α > 1:

Rα(Q∥P) :=
1

α− 1
logEP [(dQ/dP)α]

1
I. Mironov, Proc. IEEE Comp. Security Foundations Symp. (CSF), (2017)



Rényi-DP
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RDP Bounds for SGD with Poisson Subsampling

Differentially private SGD:

θt+1 = θt − ηt
1
|B|

∑
d∈Bt

Clip[∇Ld(θt)] + σnN(0, I)

There are multiple ways to form minibatches, Bt .

Poisson subsampling: Minibatches are formed by iid Bernoulli
random variables (chosen sampling probability q) which decide
whether each sample is included in the minibatch or not.

RDP bounds on SGD with Poisson subsampling: First
bounds obtained by Abadi et al.1 and Mironov et al.2

1
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L., Proceedings

of the 2016 ACM SIGSAC conference on computer and communications security, (2016)
2

Mironov, I., Talwar, K., and Zhang, L., arXiv:1908.10530, (2019).
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RDP for Fixed-size Subsampling without Replacement

Disadvantage of Poisson subsampling: Leads to variable
sized minibatches and therefore inconsistent memory usage. It
also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP
bounds more difficult to obtain.

General purpose RDP bounds (i.e., for general M) with
fixed-size subsampling obtained by Wang et al.1

We obtain tighter RDP bounds for fixed-size subsampled
DP-SGD using a Taylor expansion method, with precise bounds
on the expansion remainder terms [2].

1
Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)

2
Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.
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RDP SGD under Fixed-size Subsampling
Theorem (T -step FSwoR-RDP Upper Bound under
Replace-one Adjacency1)
Assuming q < 1 (sampling probability), T -step fixed-size
subsampled (without replacement) DP-SGD has
(α, ϵ[0,T ](α))-RDP under replace-one adjacency, where

ϵ[0,T ](α) ≤
T−1∑
t=0

1
α− 1

log

[
1 + q2α(α− 1)

(
e4/σt

2 − e2/σt
2
)
+ O(q3)

]
1. We provide computatable bounds on the O(q3) term.
2. Our result improves on the RDP bound of Wang et al.2 by

approximately a factor of 4 and is close to the theoretical
lower bound2 in practice.

1
Birrell, J., Ebrahimi, R., Behnia, R., Pacheco, J., NeurIPS (2024), arXiv:2408.10456.

2
Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)
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Comparison with Wang et al.
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Figure: Comparison of our FSwoR-RDP bounds under replace-one
adjacency for various choices of m with the upper and lower bounds
from Wang et al.1 We used σt = 6, |B| = 120, and |D| = 50,000.

1
Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, (2019)



Comparison with Poisson Subsampling on CIFAR10
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Figure: Comparing privacy guarantees of FSwoR-RDP with Wang et
al. and Poisson Subsampled RDP (left). Comparing FSwoR-RDP
performance against Poisson subsampled RDP (right). We used
σt = 6, C = 3, |B| = 120, |D| = 50,000, and lr = 1e − 3.



Memory Usage Comparison

Figure: Comparing memory usage of FS-RDP with other Opacus
privacy accountants in each training epoch. We used |B| = 120, and
|D| = 50,000.
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