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Causal Discovery
Learning directed acyclic graph (DAGs) from data

• Inferring causal relations between variables and effects is an
important task in all areas of science, e.g., genetics, finance,
social science. Such causal relationship is usually represented
by a graph G.

• The graph G can used to describe how the data are
generating.

Background

Graphical models: compact models of p(x1, . . . , xd)
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Structure learning: what graph fits the data best?
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• The goal of causal discovery is to learning a DAG based on
the observed data X.
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Score-based Structure Learning

• Score-based approaches: choosing best B to optimize the
score s(B;X).

min
B∈{0,1}p×p,B∈DAG

s(B;X)

s(B;X): how well an adjacency matrix B ∈ {0, 1}p×p fits the
data X.

• Combinatorial optimization problem is generally known to be
NP-complete.

• Zheng et al. [2018] has formulated such problem as a
constrained continuous optimization problem, which is
amendable to gradient-based optimization scheme.
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Differentiable DAG Learning

• The problem is written as

min
B∈Rp×p

s(B;X) subject to h(B) = 0. (1)

• Discrete adjacency matrix B ∈ {0, 1}p×p is relaxed to real
matrices, i.e., B ∈ Rp×p

• h : Rp×p → [0,∞) is a non-negative nonconvex differentiable
function which penalize the circle in G. Specifically, h(B) = 0
if and only if B is a DAG.

• One example of h(B), i.e., h(B) = tr(eB◦B)− p.
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Structural Equation Model(SEMs)
Data Generating Procedure

• Let X = (X1, . . . ,Xp)

• An SEM (X , f ,P(N )) is a collection of p structural equation

Xj = fj(X ,Nj), ∂kfj = 0 if k /∈ PAj , (2)

1. f = (fj)p
j=1, fj : Rp+1 → R

2. N = (N1, . . . ,Np) is independent noises with P(N )
3. PAj denotes parents node of j.
4. The graphical structure implied by SEM can be represented by

weighted adjacency matrix B := B(f ),Bij = ‖∂ifj‖2
• In fact, essentially any distribution can be represented as an

SCM of the form[Peters et al., 2017]
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Parameters and the negative log-likelihood (NLL)

• Let distribution of X be P(X , ψ, ξ) where ψ ∈ Ψ ⊆ Rm,
ξ ∈ Ξ ⊆ Rs. Specifically, ψ, ξ denotes all the parameter for
f ,N separately. examples

• Given n i.i.d samples X = (x1, . . . , xn)
> where

xi ∼ P(X ;ψ, ξ), the negative log-likelihood and expected
version

`n(ψ, ξ) = − 1

n

n∑
i=1

log P(xi ;ψ, ξ), `(ψ, ξ) = −E[log P(x;ψ, ξ)],
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Identifiablity
Parameter and Structural Identifiability

Let P(X , ψ0, ξ0) be the true distribution.
• Parameter identifiability : Is it possible to uniquely determine

the parameters (ψ0, ξ0) based on observations from
P(X ;ψ0, ξ0)? Formally, is there any (ψ̃, ξ̃) 6= (ψ0, ξ0), such
that P(X , ψ0, ξ0) = P(X , ψ̃, ξ̃) almost surely?

• Structural identifiability : Is it possible to uniquely determine
the DAG G(B0) based on observations from P(X ;ψ0, ξ0)? In
other words, is there any (ψ̃, ξ̃) 6= (ψ0, ξ0) such that
P(X , ψ0, ξ0) = P(X , ψ̃, ξ̃) but G(B0) 6= G(B(ψ̃)).
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Question

What is the appropriate score s(B;X) to ensure that the solution
to (1) can recover the true G0 (or up to an equivalent class),

despite the model being unidentifiable in its parameters?
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General linear Gaussian SEMs
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General linear Gaussian SEMs
A nonidentifiable model

• Consider a well-known model which is nonidentifiable in term
of parameters and structure.

X = B>X + N ,
B ∈ Rp×p

N ∼ N (0,Ω) Ω = diag(ω2
1, . . . , ω

2
p)

(3)

• The distribution of X

X ∼ N (0,Θ−1), Θ = Θf (B,Ω) := (I − B)Ω−1(I − B)>

Subscript f refers to a function. In such case, Θf is function
of (B,Ω).

• In term of general SEM (2). ψ = B, ξ = Ω
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Equivalence class

• It is known that model (3) is unidentifiable. This means that
multiple pairs (B,Ω) can induce the same distribution P(X).

• Define the equivalence class E(Θ) equivalence class be the
collection of all the parameters generate the

E(Θ) := {(B,Ω) : Θf (B,Ω) = Θ}. (4)

• Which pair (B,Ω) to estimate? The “simplest” DAG!
• Find B that has the minimal number of nonzero entries in the

equivalence class.
• Let number of edge in B, sB = |{(i, j) : Bij 6= 0}|.
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Minimality

Definition (Minimality)
(B,Ω) is called a minimal-edge I-mapa in the equivalence class
E(Θ) if sB ≤ sB̃,∀(B̃, Ω̃) ∈ E(Θ). The set of all minimal-edge
I-maps in the equivalence class E(Θ) is referred to as the
minimal equivalence class Emin(Θ):

Emin(Θ) = {(B,Ω) : (B,Ω) is minimal-edge I-map, (B,Ω) ∈ E(Θ)}.

aThis generalizes the classical definition for DAGs [e.g. Van de Geer and
Bühlmann, 2013] to refer to the entire model with the distribution and graph
encoded by the matrix B and the error variance Ω.
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Regularization

• To distinguish elements in E(Θ) from minimal element in
Emin(Θ), a regularizer is needed to account the number of
edges included.

• `0 is a natural choice, but its non-differentiable nature is
amenable to continuous structure learning.

• `1 is not effective in precisely counting the number of edges,
and also biased in parameter estimation.

• Alternatives such as smoothly clipped absolute deviation
(SCAD) penalty and the minimax concave penalty (MCP)
have been proposed to mitigate these shortcomings.
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quasi-MCP
• A reparametrized version of MCP, termed quasi-MCP is used.

quasi-MCP: pλ,δ(t) = λ[(|t| − t2

2δ
)1(|t| < δ) +

δ

2
1(|t| > δ)]
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Optimization

• The score function

s(B,Ω;λ, δ,X) = `n(B,Ω) + pλ,δ(B)

where `n(B,Ω) is NLL.
• The optimization can be written as

min
B,Ω

s(B,Ω;λ, δ,X) subject to h(B) = 0, Ω > 0. (5)

• The optimization requires minimizing `n(B,Ω) and pλ,δ
simultaneously. Define the set of global minimizers

On,λ,δ = {(B∗,Ω∗) : (B∗,Ω∗) is a minimizer of (5)}. (6)
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Provably recovering minimal models

Theorem
Let X follow model (3) with (B0,Ω0) and Θ0 = Θf (B0,Ω0).
Let X be n i.i.d. samples from P(X). Then, for all sufficiently
small λ, δ > 0 (independent of n), it holds that
P(On,λ,δ = Emin(Θ

0)) → 1 as n → ∞.

The elements in Emin(Θ) not only represent the “simplest” DAG
model for X in term of edge count, but also bears a deep connection
to classical notion such as Markov equivalence.
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Minimal Models and Markov Equivalence Class

Definition (Markov, faithful, Markov equivalence class)
1. I(P): the set of conditional independence relations implied

by P
2. I(G) denote the set of d-separations implied by the graph

G.
3. P is markov to G if I(G) ⊂ I(P)

4. P is faithful to G if I(P) = I(G).
5. For any DAG G, the Markov equivalence class is

M(G) = {G̃ : I(G̃) = I(G)}
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Minimal Models in the same Markov Equivalence
Class

Lemma
Let X follow model (3) with (B0,Ω0) and Θ0 = Θf (B0,Ω0).
Assume that P(X) is faithful to G0 := G(B0). Then
M(G0) = G(Emin(Θ

0)).

where G(Emin(Θ)) := {G(B) : (B,Ω) ∈ Emin(Θ)}.

Theorem
Consider the setup in Theorem above and assume additionally
that P(X) is faithful to G0 := G(B0). Then, for all sufficiently
small λ, δ > 0 (independent of n), it holds that
P(G(On,λ,δ) = M(G0)) → 1 as n → ∞.
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Scale invariance and standardization
Standardization of data would make causal structural learning algo-
rithms utilizing least square loss fail [Reisach et al., 2021]. But it
turns out that NLL is scale-invariant.
Theorem (Scale invariance)
Under the same setting as previous Theorem, the solutions to
(5) are scale-invariant. That is, for any n ≥ 0, let

On,λ,δ(X) ={(B∗,Ω∗) : (B∗,Ω∗) is a minimizer of (5) with data X},
On,λ,δ(Z) ={(B∗,Ω∗) : (B∗,Ω∗) is a minimizer of (5) with data Z},

where Z is the standardized version of X. For all sufficiently
small λ, δ > 0 and all n, we have G(On,λ,δ(X)) = G(On,λ,δ(Z)).
Moreover, for all sufficiently small λ, δ > 0 we have

P
[
G(On,λ,δ(X)) = G(On,λ,δ(Z)) = G(Emin(Θf (B0,Ω0)))

]
→ 1

as n → ∞. 19/36



General Models
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General Models and its minimal models
• Assume X follows model (2) and the induced distribution is

denoted by P(X ;ψ0, ξ0).
• Define the equivalence class E(ψ0, ξ0),

E(ψ0, ξ0) = {(ψ, ξ) : P(x;ψ, ξ) = P(x;ψ0, ξ0),∀x ∈ Rp}.

Lemma
(ψ, ξ) is called a minimal-edge I-map in the equivalence class
E(ψ0, ξ0) if sB(ψ) ≤ sB(ψ̃)

,∀(ψ̃, ξ̃) ∈ E(ψ0, ξ0). We further define

Emin(ψ
0, ξ0) = {(ψ, ξ) : (ψ, ξ) is minimal-edge I-map,

(ψ, ξ) ∈ E(ψ0, ξ0)}.
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Nonconvex regularized log-likelihood

• Similar in spirit to previous Theorem, define the following
problem

min
ψ∈Ψ,ξ∈Ξ

`n(ψ, ξ) + pλ,δ(B(ψ)) subject to h(B(ψ)) = 0,

(7)

• The set of global minimizers.

On,λ,δ = {(ψ∗, ξ∗) : (ψ∗, ξ∗) is minimizer of (7)}.
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Theoretical Guarantee for General Model

Assumption (A)
(1) |E(ψ0, ξ0)| is finite. (2) B(ψ) is L-Lipschitz w.r.t. ψ, i.e.
‖B(ψ1)−B(ψ2)‖2

‖ψ1−ψ2‖2 ≤ L.

Assumption (B)
For any α such that `(ψ0, ξ0) < α, the level set
{(ψ, ξ) : `(ψ, ξ) ≤ α} is bounded, where `(ψ, ξ) is the expected
NLL�
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Theoretical Guarantee for General Model

Theorem
Let X follow model (2) with parameters (ψ0, ξ0) and let X be n
i.i.d. samples from P(X ;ψ0, ξ0). Under Assumptions A-B, for all
sufficiently small λ, δ > 0 (independent of n), it holds that
P(G(On,λ,δ) = G(Emin(ψ

0, ξ0))) → 1 as n → ∞.

Theorem
Under the setting in Theorem above and assuming that
P(X ; ξ0, ψ0) is faithful with respect to G0 := G(B(ψ0)). Then,
for all sufficiently small λ, δ > 0 (independent of n), it holds that
P(On,λ,δ = M(G0)) → 1 as n → ∞.

24/36



Experiments
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Experiments on raw data X
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Figure: Results in terms of SHD between MECs of estimated graph and
ground truth on raw data X. Lower is better. Column: k = {1, 2, 4}.
Row: random graph types. {ER,SF}-k = {Scale-Free,Erdős-Rényi }
graphs with kd expected edges. Here p = {10, 20, 50, 70, 100},n = 1000.
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Experiments on standardized data Z
1

E
R

S
F

25 50 75 100

0

50

100

0

50

100

150

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g 

D
is

ta
nc

e 
(S

H
D

)

2

E
R

S
F

25 50 75 100

0

100

200

300

400

0

100

200

300

d (Number of nodes)

4

E
R

S
F

25 50 75 100

0

300

600

900

0

200

400

600

d (Number of nodes)

method DAGMA FGES GOLEM LOGLL_NOTEARS_POPULATION LOGLL_NOTEARS_SAMPLE NOTEARS PC

Figure: Results in terms of SHD between MECs of estimated graph and
ground truth on standardized data Z. Lower is better. Column:
k = {1, 2, 4}. Row: random graph types. {ER,SF}-k =
{Scale-Free,Erdős-Rényi } graphs with kd expected edges. Here
p = {10, 20, 50, 70, 100},n = 1000.
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Direct comparison
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(a) p = 10, graph =“ER”, k = 2
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(b) p = 50, graph =“ER”, k = 2

Figure: Comparison of raw (orange) vs. standardized (green) data. SHD
(lower is better) between Markov equivalence classes (MEC) of recovered
and ground truth graphs for ER-2 graphs with 10 (left) or 50 (right)
nodes. In (b), SHD for VarSort with standardized data is omitted due to
its average exceeding 300.
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Solving Optimization (5) Exactly
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Figure: Both Exact-sample and Exact-population produce the same DAG
structure for raw data X and standardized data Z. When the population
covariance matrix is known, Emin(Θ

0) = M(G0), resulting in an SHD of
zero.
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Neural Network
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General Linear Model with Binary Output
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logll-notears) uses log-likelihood with quasi-MCP, NOTEARS use
log-likelihood with `1. Error bars represent standard errors over 10
simulations. 31/36



Thanks for Listening!
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Appendix
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Identifiablity

Definition (identifiablity)
G is identifiable if no other SEMs can induce the same distribution
P(X) with a different DAG.
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Find (W̃ (π), Ω̃(π))

Define

Θ0 := Θ(W 0,Ω0) = (I − W 0)[Ω0]−1(I − W 0)>

(PπA)ij = Aπ(i),π(j)

• Calculate Pπ(Θ0)

• Use Cholesky decomposition:
PπΘ0 = (I − L)D−1(I − L)> = Θ(L,D)

• Θ0 = (Pπ)−1Θ0(L,D) = Pπ−1Θ0(L,D) =
Θ0(Pπ−1L,Pπ−1D)

• B̃0(π) = Pπ−1L, Ω̃0(π) = Pπ−1D
Back to Equivalence Class
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