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Causal Discovery
Learning directed acyclic graph (DAGs) from data

® |nferring causal relations between variables and effects is an
important task in all areas of science, e.g., genetics, finance,
social science. Such causal relationship is usually represented
by a graph G.

® The graph G can used to describe how the data are

generating.
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® The goal of causal discovery is to learning a DAG based on
the observed data X.
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Score-based Structure Learning

® Score-based approaches: choosing best B to optimize the
score s(B;X).

Be{o,l}gipl,lBeDAG s(B; X)
s(B;X): how well an adjacency matrix B € {0, 1}P*? fits the
data X.

® Combinatorial optimization problem is generally known to be
NP-complete.

® Zheng et al. [2018] has formulated such problem as a

constrained continuous optimization problem, which is
amendable to gradient-based optimization scheme.

3/36



Differentiable DAG Learning

The problem is written as

min s(B;X) subject to h(B) =0. (1)
BeRpxp

Discrete adjacency matrix B € {0,1}P*? is relaxed to real
matrices, i.e., B € RP*P

h : RP*P — [0, 00) is a non-negative nonconvex differentiable
function which penalize the circle in G. Specifically, h(B) =0
if and only if B is a DAG.

One example of h(B), i.e., h(B) = tr(eP°?) — p.
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Structural Equation Model(SEMs)

Data Generating Procedure

o Let X = (X1,...,X,)
e An SEM (X, f, P(N)) is a collection of p structural equation

X;=fi(X,N;), Onfj=0if k¢ PA;, (2)

=) f: R S R

N = (M,...,N,) is independent noises with P(N)

PA; denotes parents node of j.

The graphical structure implied by SEM can be represented by
weighted adjacency matrix B := B(f), By; = ||0:f;l|2

=

® |n fact, essentially any distribution can be represented as an
SCM of the form[Peters et al., 2017]
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Parameters and the negative log-likelihood (NLL)

® Let distribution of X be P(X,v,&) where ¢p € ¥ C R™,
& € = C R?. Specifically, 1, £ denotes all the parameter for
f, N separately.

® Given n i.i.d samples X = (x1,...,%X,)' where
x; ~ P(X;,&), the negative log-likelihood and expected
version

() = —— S log Plxis,6), U(w,€) = ~Eflog P(x;4,€)),
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|dentifiablity

Parameter and Structural Identifiability

Let P(X,4°,£%) be the true distribution.

® Parameter identifiability: |s it possible to uniquely determine
the parameters (1/°, £°) based on observations from
P(X;4% €97 Formally, is there any (1;, E) # (42, €9), such
that P(X,4°,£%) = P(X,1,&) almost surely?

e Structural identifiability: ls it possible to uniquely determine
the DAG G(B') based on observations from P(X;4° £9)7 In
other words, is there any (1/) 5) # (40, €9) such that

P(X,9°,¢%) = P(X,1,¢) but G(B°) # G(B(1)).
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Question

What is the appropriate score s(B;X) to ensure that the solution
to (1) can recover the true G° (or up to an equivalent class),
despite the model being unidentifiable in its parameters?
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General linear Gaussian SEMs
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General linear Gaussian SEMs

A nonidentifiable model
® Consider a well-known model which is nonidentifiable in term
of parameters and structure.

X=B"X+N,
B € RPX?P (3)
N ~ N(0,9Q) 0= diag(w%,...,w?,)

® The distribution of X
X ~N(0,07Y, ©=0B,Q) :=I-BQ Y I-B)T

Subscript f refers to a function. In such case, O is function
of (B,9Q).
¢ In term of general SEM (2). v = B,{ =Q
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Equivalence class

It is known that model (3) is unidentifiable. This means that
multiple pairs (B, 2) can induce the same distribution P(X).

Define the equivalence class £(O) be the
collection of all the parameters generate the

£(0) :={(B,Q) : ©4(B,Q) = O}. (4)

Which pair (B, Q) to estimate? The “simplest” DAG!
Find B that has the minimal number of nonzero entries in the
equivalence class.

Let number of edge in B, sp = [{(7,]) : Bjj # 0}|.
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Minimality

Definition (Minimality)

(B, Q) is called a minimal-edge I-map? in the equivalence class
£(O) if sp < s3,V(B,Q) € £(O). The set of all minimal-edge
I-maps in the equivalence class £(O) is referred to as the
minimal equivalence class Enin (0©):

Emin(0©) = {(B,Q) : (B,N) is minimal-edge I-map, (B,Q2) € £(0)}.

“This generalizes the classical definition for DAGs [e.g. Van de Geer and
Biihlmann, 2013] to refer to the entire model with the distribution and graph
encoded by the matrix B and the error variance 2.
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Regularization

To distinguish elements in £(0) from minimal element in
Emin(©), a regularizer is needed to account the number of
edges included.

{o is a natural choice, but its non-differentiable nature is
amenable to continuous structure learning.

£ is not effective in precisely counting the number of edges,
and also biased in parameter estimation.

Alternatives such as smoothly clipped absolute deviation
(SCAD) penalty and the minimax concave penalty (MCP)
have been proposed to mitigate these shortcomings.
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quasi-MCP
® A reparametrized version of MCP, termed quasi-MCP is used.

2
quasi-MCP: pas(t) = A[([t] — ;—5)1(|t| <9d)+ g]l(|t| > )]
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Figure: The plot py s5(t) with A =2, =1

14/36



Optimization

® The score function
5(B, %5 A, 0,X) = £,(B,Q) + prs(B)

where ¢,,(B, ) is NLL.

® The optimization can be written as

rgi(r; s(B,Q; A\, 0,X) subject to h(B) =0, Q> 0.

® The optimization requires minimizing ¢, (B,2) and p) s
simultaneously. Define the set of global minimizers

Opxs ={(B*, Q%) : (B*,Q") is a minimizer of (5)}.
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Provably recovering minimal models

Theorem

Let X follow model (3) with (B°,Q°) and ©° = ©;(B°,Q°).
Let X be n i.i.d. samples from P(X). Then, for all sufficiently
small X\,0 > 0 (independent of n), it holds that

P(On,)\ﬁ = gmjn(@[))) — 1 as n — 0.

The elements in Enin(©) not only represent the “simplest” DAG
model for X in term of edge count, but also bears a deep connection
to classical notion such as Markov equivalence.
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Minimal Models and Markov Equivalence Class

Definition (Markov, faithful, Markov equivalence class)

1. Z(P): the set of conditional independence relations implied
by P

2. Z( @) denote the set of d-separations implied by the graph
G.

3. Pis markov to G if Z(G) C Z(P)

4. P is faithful to G if Z(P) = Z(G).

5. For any DAG G, the Markov equivalence class is
M(G) ={G: I(G) = 1(G)}
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Minimal Models in the same Markov Equivalence
Class

Lemma

Let X follow model (3) with (B°,Q°) and ©° = ©(B°, Q°).
Assume that P(X) is faithful to G° := G(B®). Then
M(G°) = G(Emin(0")).

where G(Enin(©)) := {G(B) : (B,Q) € Enin(©)}.

Theorem

Consider the setup in Theorem above and assume additionally
that P(X) is faithful to G := G(B°). Then, for all sufficiently
small X\,0 > 0 (independent of n), it holds that

P(g((’)m,\’g) = M(GO)) — 1 asn— oo.
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Scale invariance and standardization

Standardization of data would make causal structural learning algo-
rithms utilizing least square loss fail [Reisach et al., 2021]. But it
turns out that NLL is scale-invariant.

Theorem (Scale invariance)

Under the same setting as previous Theorem, the solutions to
(5) are scale-invariant. That is, for any n > 0, let

Oprs(X) ={(B*, Q%) : (B*,Q) is a minimizer of (5) with data X},
Onrs(Z) ={(B*, Q") : (B*,Q") is a minimizer of (5) with data Z},
where 7 is the standardized version of X. For all sufficiently

small X\,§ > 0 and all n, we have G(O,, » 5(X)) = G(Oy 1 5(Z)).
Moreover, for all sufficiently small \,§ > 0 we have

P [g(on,)\,é(x)) = g(on)\,cs(z)) = g(gmin(gf(BO’ QO)))] —1

as n — Q. 19/36



General Models
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General Models and its minimal models

¢ Assume X follows model (2) and the induced distribution is
denoted by P(X;°,£9).
® Define the equivalence class £(1?, £0),

e, &%) = {(0,€) : P(a;9,€) = P(a;9,€"), Vo € RP}.

Lemma

(1,€) is called a min/ma/—edge I-map in the equivalence class
EWO, €% if sp(y) < B (1,[) E) € EWO,£Y). We further define

Emin(¥°, %) = {(1,€) : (1, &) is minimal-edge I-map,
(¥,€) € £@°, &)}
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Nonconvex regularized log-likelihood

® Similar in spirit to previous Theorem, define the following
problem

min _{n (¥, &) + pas(B(¥)) subject to  A(B()) =0,
ISURISS)

® The set of global minimizers.

Onys = {0, &) - (¢*, &) is minimizer of (7)}.
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Theoretical Guarantee for General Model

Assumption (A)
(1) |E(W°, %) is finite. (2) B(v) is L-Lipschitz w.r.t. ), i.e.

| B(¢1)—B(p2)]l2
e, =L

Assumption (B)

For any a such that (¢, £%) < a, the level set

{(,€) : L(, &) < a} is bounded, where £(1, &) is the expected
NLL
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Theoretical Guarantee for General Model

Theorem

Let X follow model (2) with parameters (y°, &%) and let X be n
i.i.d. samples from P(X;°, £°). Under Assumptions A-B, for all
sufficiently small X\,6 > O (independent of n), it holds that
P(G(Onrs) = G(Emin(¥°,£9))) = 1 as n — oo.

Theorem

Under the setting in Theorem above and assuming that
P(X;€0,99) is faithful with respect to G° := G(B(v)°)). Then,
for all sufficiently small \,§ > 0 (independent of n), it holds that
P(Om)\#; = M(GO)) — 1 as n — oo.
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Experiments
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Experiments on raw data X
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Figure: Results in terms of SHD between MECs of estimated graph and
ground truth on raw data X. Lower is better. Column: k = {1,2,4}.
Row: random graph types. {ER,SF}-k = {Scale-Free Erdés-Rényi }
graphs with kd expected edges. Here p = {10, 20, 50, 70,100}, n = 1000.
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Experiments on standardized data Z
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Figure: Results in terms of SHD between MECs of estimated graph and
ground truth on standardized data Z. Lower is better. Column:
k={1,2,4}. Row: random graph types. {ER,SF}-k =
{Scale-Free,Erdés-Rényi } graphs with kd expected edges. Here

p = {10, 20, 50, 70,100}, n = 1000.
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Direct comparison
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Figure: Comparison of raw (orange) vs. standardized (green) data. SHD
(lower is better) between Markov equivalence classes (MEC) of recovered
and ground truth graphs for ER-2 graphs with 10 (left) or 50 (right)
nodes. In (b), SHD for VarSort with standardized data is omitted due to
its average exceeding 300.
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Solving Optimization (5) Exactly
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Figure: Both Exact-sample and Exact-population produce the same DAG
structure for raw data X and standardized data Z. When the population
covariance matrix is known, Epin (0°) = M(GP), resulting in an SHD of
zero.
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Neural Network
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classes (MEC) of recovered and ground truth graphs. LOGLL (i.e.
LOGLL-NOTEARS) stands for NOTEARS method with log-likelihood and
quasi-MCP, L2 (i.e. NOTEARS) stands for NOTEARS method with least
square and /. 30/36



General Linear Model with Binary Output

General Linear Model with Binary Output (Logistic Model)
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Columns: kd expected edges. NOTEARS_LOGLL (i.e.
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Thanks for Listening!
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Appendix
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|dentifiablity

Definition (identifiablity)
G is identifiable if no other SEMs can induce the same distribution
P(X) with a different DAG.

35/36



Find (W( ), Q(W))
Define
0% = 0(W?,0% = (I — W)[Q° 11— w7

(PrA)ij = Ar(i)n(j)

Calculate P,(0Y)

Use Cholesky decomposition:

PO = (I - LD (I - L)" =0O(L, D)
0% = (P,)" 'O L,D) = P,10%L,D) =
O%(P,-1L,P,-1D)

Bo(m) = Po—1L,Qo(n) = P—1D
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