

On the Identifiability of Poisson Branching Structural Causal Model Using Probability Generating Function

Yu Xiang¹, Jie Qiao¹, Zhefeng Liang¹, Zihuai Zeng¹, Ruichu Cai^{1,2}, Zhifeng Hao³

¹School of Computer Science, Guangdong University of Technology, China
²Peng Cheng Laboratory, Shenzhen 518066, China
³ College of Science, Shantou University, Shantou 515063, China
{thexiang2000, qiaojie.chn, Izfeng011021, zzhuaiiii, cairuichu}@gmail.com, haozhifeng@stu.edu.cn

Introduction

Task: How to learn the causal structure from the observed count data

Recent works: Poisson Branching Structural Causal Model (Qiao 2024). Poisson Bayesian Network (Park and Raskutti 2015), Zero-Inflated Poisson Bayesian Networks(Choi, Chapkin, and Ni 2020), Ordinal Causal Discovery (Ni and Mallick 2022).

Poisson Branching Structural Causal Model (PB-SCM)

Definition For each random variable $X_i \in X$, let $\epsilon_i \sim Pois(\mu_i)$ be the noise component of X_i , then X_i is generated by:

$$X_i = \sum_{j \in Pa(i)} \alpha_{j,i} \circ X_j + \epsilon_i,$$

Each event contributes independently to the occurrence of its child event.

where $\alpha_{j,i} \in (0,1]$ is the causal coefficient from X_j to X_i .

Thinning operator "o" helps model branching structure.

A toy example for the thinning operator, each *X* has a 60% chance of triggering an occurrence of an event *Y*.

Limitations of the cumulant-based method for PB-SCM

Why Do These Limitations Exist?

The $\tilde{\Lambda}_k(X_i \to X_j)$ constructed by cumulant extract path information from entire graph and only enable causal discovery when they reach the highest non-zero order.

Cumulant-based method can only leverage higher-order information

Probability Generating Function

Definition. Given discrete random vector $\mathbf{X} = [X_1, \dots, X_d]^T$ taking values in the non-negative integers $\mathbb{Z}^{\geq 0}$, the probability generating function of X is defined as:

$$G_{\mathbf{X}}(\mathbf{z}) = \mathbb{E}[z_1^{X_1} \cdots z_d^{X_d}] = \sum_{x_1, \dots, x_d=0}^{\infty} p(x_1, \dots, x_d) z_1^{x_1} \cdots z_d^{x_d},$$

where *p* is the probability mass function of **X** and $|z_i| \leq 1$.

The expectation form of the PGF doesn't provide any interpretable information.

Theorem 1 (Closed-form solution for PGF of PB-SCM). Given a random vector $\mathbf{X} = [X_1, ..., X_n]^T$ following PB-SCM, let $\mathbf{z}_{(j)} = \{z_l | l \in Des(j) \cup \{j\}\}$, the PGF of $P(\mathbf{X})$ is given by $G_{\mathbf{X}}(\mathbf{z}) = \prod_{i \in [d]} G_{\epsilon_i} \Big(z_i \times \prod_{j \in Ch(i)} G_{i,j}(\mathbf{z}_{(j)}) \Big)$, where $G_{i,j}(\mathbf{z}_{(j)}) = \begin{cases} G_{B(\alpha_{i,j})} \Big(z_j \times \prod_{k \in Ch(j)} G_{j,k}(\mathbf{z}_{(k)}) \Big) &, Ch(j) \neq \emptyset \\ G_{B(\alpha_{i,j})}(z_j) &, Otherwise \end{cases}$, (3)

in which $G_{\epsilon_i}(\cdot)$ is the PGF of Poisson noise ϵ_i and $G_{B(\alpha_{i,j})}(\cdot)$ is the PGF of Bernoulli distribution with parameter $\alpha_{i,j}$.

The Closed Form of Probability Generating Function

Each term in the closed form of PGF corresponds to a branching structure.

Discovery: Each term in the closed form of PGF corresponds to a branching structure.

The PGF has a local property, allowing for the efficient identification of **local structures**.

Specific **local structures** can be identified by verifying the existence of corresponding term in $\lim_{z_4 \to 0} G_X(z_1, z_2, z_3, z_4)$

Focus on **local structures**, No need for high-order information

Discovery: Each term in the closed form of PGF corresponds to a branching structure.

Identifiability & Method: Specific **local structure** can be identified by verifying the existence of specific items in PGF

PGF leverage low-order information to identify causal direction

• Certain identifiability issues ($\sqrt{}$)

• High computational cost ($\sqrt{}$)

Total complexity :
$$\mathcal{O}\left(\frac{d(d-1)}{2} + \frac{2d(d-1)(d-2)}{3}\right)$$

• Estimation bias $(\sqrt{})$

Identify local structures without relying on high-order cumulants, improving estimation accuracy.

Experiments Result

Sensitivity Experiment

Table 1: Sensitivity to Avg. Indegree Rate.

	F1↑				SHD↓			
Avg. Indegree	2.0	2.5	3.0	3.5	2.0	2.5	3.0	3.5
Ours	0.74 ± 0.05	0.81 ± 0.07	0.86 ± 0.03	0.89 ± 0.04	9.67 ± 1.99	8.33 ± 2.28	6.40 ± 1.68	5.27 ± 1.39
Cumulant	0.73 ± 0.03	0.77 ± 0.02	0.80 ± 0.04	0.83 ± 0.03	13.40 ± 1.28	14.10 ± 1.51	13.00 ± 2.37	13.20 ± 2.23
PC	0.60 ± 0.17	0.62 ± 0.11	0.54 ± 0.12	0.60 ± 0.12	9.90 ± 3.45	11.80 ± 2.48	15.90 ± 3.91	16.10 ± 3.21
GES	0.48 ± 0.14	0.48 ± 0.11	0.41 ± 0.11	0.37 ± 0.10	14.90 ± 4.48	19.50 ± 4.61	25.90 ± 4.18	30.5 ± 4.06
OCD	0.23 ± 0.22	0.27 ± 0.23	0.28 ± 0.16	0.37 ± 0.14	16.10 ± 3.70	19.40 ± 5.50	23.60 ± 4.62	24.30 ± 4.67

Table 2: Sensitivity to Sample Size.

	F1↑				SHD↓			
Sample Size	5000	15000	30000	50000	5000	15000	30000	50000
Ours	0.75 ± 0.09	0.82 ± 0.04	0.86 ± 0.03	0.87 ± 0.04	11.50 ± 3.34	9.27 ± 2.37	6.40 ± 1.68	5.87 ± 1.25
Cumulant	0.72 ± 0.04	0.78 ± 0.02	0.80 ± 0.04	0.80 ± 0.03	19.90 ± 3.35	15.00 ± 1.41	13.00 ± 2.49	13.60 ± 2.63
PC	0.45 ± 0.11	0.54 ± 0.11	0.54 ± 0.13	0.66 ± 0.09	19.50 ± 4.30	15.70 ± 3.77	15.90 ± 4.12	13.00 ± 2.79
GES	0.39 ± 0.10	0.44 ± 0.20	0.41 ± 0.11	0.43 ± 0.22	23.70 ± 4.14	22.70 ± 7.85	25.90 ± 4.41	24.10 ± 8.84
OCD	0.30 ± 0.12	0.35 ± 0.18	0.28 ± 0.16	0.38 ± 0.20	21.90 ± 3.35	20.80 ± 4.57	23.60 ± 4.62	20.90 ± 5.74

Table 5: Runtime of each method under the default setting.

	Ours	Cumulant	PC	GES	OCD
Runtime (second)	7.94 ± 0.75	77.07 ± 4.94	5.00 ± 1.35	6.90 ± 1.86	9216 ± 1368

Real World Experiment. we orientate in the local triangular structures Y1 - Y2 - F, Y2 - R - F, and the local collider structure Y1 - S - R.

As a result, Our method successfully identifies adjacent vertex Foul – First Yellow Card and other six causal directions, which is consistent with our theoretical result.

Case study

Table 3: Case studies of causal graphs with in total 3, 4, and 5 vertices, respectively. Red undirected edges indicate that adjacency has been learned but the direction cannot be determined, while red directed edges indicate incorrectly learned directions.

Figure 4: Football Event Graph (F: Foul, Y_1 : Yellow card, Y_2 : Second yellow card, R: Red card, S: Substitution)

Thanks!