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Introduction & Contribution 

• Neural Networks (NN) achieve outstanding performances in solving complex tasks such as image 

classification problems, object detection;

• Quantify expressivity pre-training ➔ complexity measures

• A good complexity measure for NN should:

1. Give useful pre-training information;

2. Be more efficient/scalable than full training;

3. Be applicable to over-parametrized regimes;

4. Provide insights about generalization.



Introduction & Contribution 

Our contributions:

• A new complexity measure, the two-scale effective 

       dimension (2sED) satisfying (1), (3), (4);

• Approximation for Markovian models satisfying (2);

• Empirical validation of (1), (2), (3).



Notation



The Effective Dimension

effdim𝑒𝑓𝑓,𝜀 ℳΘ  ≔
log 𝒩𝜃(𝜀)

| log 𝜀 |
 

where 𝒩𝜃(𝜀) is the minimum number of Fisher boxes of size 𝜺 needed to cover Θ 



Θ = 0,1 d and 𝐹 = 𝑑𝑖𝑎𝑔 𝜆1, … , 𝜆𝑑 : 
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The 2-scale Effective Dimension

Definition  

Given 0 < 𝜀 < 1 and 0 ≤ 𝜁 < 1, we define the two-scale effective dimension (or simply 2sED) 
as:

𝑑𝜁 𝜀 = 𝜁𝑑 + 1 − 𝜁
log 𝔼𝜃[det( 𝐼𝑑+𝜀𝜁−1 𝐹 𝜃 1/2)]

| log 𝜀𝜁−1|
 

where: 
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𝑑
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Generalization Buond

Under suitable assumptions: 
1. The model 𝜃 → 𝑝𝜃 is 𝐶1,1 and ∃ 0 < 𝛼1 ≤ 𝛼2 such that  𝛼1 ≤ 𝑝, 𝑝𝜃 ≤ 𝛼2;
2.      The FIM 𝐹(𝜃) and the loss function ℒ are bounded and Lipschitz;
3. The meso-scale exponent 𝜁 ∈

2

3
, 1 ;

Under assumptions (1), (2), (3), there exists 𝐶, 𝐻, 𝐾, 𝑛0 > 0 such that ∀𝛾 ∈ 0,1 , 𝑛 ≥ 𝑛0 and 𝜀𝑛 = ൗlog 𝑛
𝛾𝑛
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Markovian Models
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Selected Experiment

MLP 54-16-7 • 𝑂𝑖 ⋅ ≔ 𝑎𝑐𝑡(𝑊𝑖 ⋅) where act is the activation function;

• Stochasticity: 

 𝑂𝑖
𝜎 ≔ 𝑂𝑖 + 𝜈𝑖 ∼ 𝒩(𝑂𝑖, 𝜎2𝐼𝑑)

 where 𝜈𝑖 ∼ 𝒩(0, 𝜎2);

• Compare three models with similar amount of 
parameters and ReLU activation functions; 

CoverType Dataset [4]: Classification of pixels into 7 forest cover types based on attributes such 
as elevation, aspect, slope, hillshade, soil-type, and more. 



Selected Experiment

Estimated 𝑑𝜁(𝜀)  of three different MLP 
architectures using 100 Covertype samples 
and 100 different vectors of parameters for the 
Monte Carlo estimation of 𝐹𝑁  ; 

Comparison 𝑑𝜁 𝜀  and 𝑑𝜁(𝜀) for MLP 54-16-7
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Selected Experiment

Training loss plots of MLPs on 100000 random 
CoverType samples using Adam with learning 
rate 1𝑒−3 and a batch size 64; 

Training loss plots of MLPs on 10000 random 
CoverType samples using Adam with 
learning rate 1𝑒−3 and a batch size 64; 
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Thanks for the attention!
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