

Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection

Trustworthy Visual Intelligence Group

Jiaxu Leng, Zhanjie Wu, Mingpi Tan, Yiran Liu, Ji Gan, Haosheng Chen, Xinbo Gao*

Chongqing University of Posts and Telecommunications Speaker: Zhanjie Wu

Violence Detection

Outline

Introduction

Challenge

Method

Results

Conclusion

tion

Weakly Supervised Video Violence Detection (WSVVD)

WSVAD involves training a binary classifier using video-level labels that include both normal and violent videos. An anomaly score is calculated for each frame to determine whether the frame contains a violent event.

Conclusion

/02 Challenges in WSVVD

Ambiguous Violence: normal events that are visually similar to violent events

Existing Method:

- Using only Euclidean representations. (i.e. HL-Net, MACIL-SD)
- Using only hyperbolic representations. (i.e. HyperVD)

Movitation: hyperbolic representation enhances hierarchical event relations but weakens visual feature expression, while Euclidean representation emphasizes visual features but overlooks event relationships. DSRL effectively addresses ambiguous violence, which is challenging for either space alone.

CQUPT | Trustworthy Visual Intelligence Group

Overview of the proposed DSRL framework

Introduction Challenges Method Results

Comparisons with State-of-the-art Methods

Methods	Input Setting	Feature Space	UCF-Crime	XD-Violence
Sultani et al. [29]	Unimodal	Euclidean	76.21	73.20
Wu et al. [32]	Unimodal	Euclidean	82.44	75.90
RTFM [30]	Unimodal	Euclidean	84.30	77.81
MSL [15]	Unimodal	Euclidean	85.30	78.28
MGFN 5	Unimodal	Euclidean	86.98 (1 st)	$79.19(3^{rd})$
UMIL [17]	Unimodal	Euclidean	$86.75(2^{nd})$	$81.66(2^{nd})$
CU-Net [38]	Unimodal	Euclidean	86.22	78.74
Ours	Unimodal	Euclidean and Hyperbolic	86.38(3 ^{<i>rd</i>})	82.01 (1 st)
HL-Net 33	Multimodal	Euclidean	-	78.64
Wu et al. 34	Multimodal	Euclidean	-	78.64
Pang et al. [22]	Multimodal	Euclidean	-	79.37
UMIL [17]	Multimodal	Euclidean	-	81.77
Zhang et al. [38]	Multimodal	Euclidean	-	81.43
MACIL-SD 36	Multimodal	Euclidean	-	$83.40(3^{rd})$
HyperVD 24	Multimodal	Hyperbolic	-	$85.67(2^{nd})$
Ours	Multimodal	Euclidean and Hyperbolic	-	87.61 (1 st)

Ablation Studies

Table 2: Ablations on XD-Violence dataset.

Euclidean Hyperbolic			DSI		XD-Violence		
GCN	HE-GCN	HGCN	Concat	Cosine Metric	Lorentzian Metric	Multimodal(%)	Unimodal(%)
\checkmark						84.04	77.95
\checkmark		\checkmark	~			85.01	77.93
\checkmark	~		~			86.46	79.70
\checkmark	\checkmark			\checkmark		86.91	80.72
\checkmark	\checkmark				\checkmark	87.61	82.01

/04 Visualizations

Feature Discrimination Visualization

Qualitative Visualizations

/04 Visualizations

5.0

2.5

0.0

-2.5

-5.0

-7.5

-15

-10

-5

(d) w/ HE-GCN and w/ DSI

10

10

-10

-5

(c) w/ HE-GCN and w/o DSI

/04 Visualizations

Qualitative Visualizations of DSRL in the context of ambiguous violence

This supports our motivation: hyperbolic representation enhances hierarchical event relations but weakens visual feature expression, while Euclidean representation emphasizes visual features but overlooks event relationships. DSRL effectively addresses ambiguous violence, which is challenging for either space alone.

- We propose a comprehensive geometric representation learning method, Dual-Space Representation Learning (DSRL) which integrates the benefits of Euclidean and hyperbolic geometries to improve the discrimination of ambiguous violence.
- Hyperbolic Energy-constrained Graph Convolutional Network (HE-GCN) is designed to better capture the hierarchical context of events.
- Additionally, Dual-Space Interaction (DSI) is designed to facilitate information interactions.
- Our method achieves SOTA performance on the XD-Violence dataset in both unimodal and multimodal settings, especially excelling in resolving ambiguous violence.

Thanks for your listening and attention!

Beyond Euclidean: Dual-Space Representation Learning for Weakly Supervised Video Violence Detection

