MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable **Convergence**

lonut-Vlad Modoranu¹, Mher Safaryan¹, Grigory Malinovsky², Eldar Kurtic¹, Thomas Robert¹, Peter Richtarik², Dan Alistarh¹

> ¹ Institute of Science and Technology Austria (ISTA) ² King Abdullah University of Science and Technology (KAUST)

> > November 12th, 2024

Memory usage of Adam

- model size **d**
- two momentum buffers (**m**, **v**): **2d** additional memory
	- float32 (4 Bytes): **8d** (B)
	- bfloat16 (2 Bytes): **4d** (B)
- Existing work
	- AdamW-8bit: **2d** (B)
	- Can we do better?

MicroAdam

- Designed for finetuning
	- not all gradient entries are necessary for optimization
- Store a window of **m** sparse gradients
	- Top-K
	- 99% sparse
	- store largest 1% components (indices and values)
- **Error Feedback**
	- stores the compression error and corrects the gradient
	- quantized to 4 bits
- Constructs the Adam update dynamically at each step using CUDA kernels
	- We do not store **m** and **v**, so no additional memory used
- Memory footprint (bytes)
	- **0.9d** compared to 2d for AdamW-8bit

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $\blacktriangleleft a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\blacktriangleright \mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $\bullet a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\blacktriangleright \delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \tilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i, :} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

1: Input:
$$
\beta_1, \beta_2, \epsilon, \mathcal{G}, \mathcal{T}, d, k
$$

\n2: $m_0, v_0 \leftarrow 0_d, 0_d$
\n $\delta_1, \Delta_1 \leftarrow 0, 0$
\n $e_1 \leftarrow 0_d^{4b}$
\n3: **for** $t = \{1, 2, ..., T\}$ **do**
\n4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
\n5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
\n6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
\n7: $a_t[\mathcal{I}_t] \leftarrow 0$
\n8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
\n9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
\n10: $\mathcal{G}_{i, :} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
\n11: $\rightarrow \hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
\n12: $\rightarrow \hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
\n13: $\rightarrow \theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
\n14: $i \leftarrow (i+1)\%m$
\n15: **end for**

MicroAdam - LLM Finetuning Results

Table 2: FFT results for Llama-2 7B/13B on GSM-8k.

LLaMA-2 size	Optimizer	Accuracy	State	Total	Runtime
	Adam	34.50%	25.1 GB	55.2 GB	1h17m
7B	Adam-8b	34.34%	12.55 GB	42.5 GB	$1h$ $18m$
	MICROADAM $(m = 10)$	34.72%	5.65 GB	37.1 GB	1h 8m
	MICROADAM $(m = 20)$	35.10%	8.25 GB	39.7 GB	$1h$ 37 m

Theory: Gradient and Error Compression

Assumption 1. The gradient compressor $C : \mathbb{R}^d \to \mathbb{R}^d$ is q-contractive with $0 \le q < 1$, i.e., $\|\mathcal{C}(x)-x\|\leq q\|x\|$, for any $x\in\mathbb{R}^d$.

Assumption 2. The error compressor $\mathcal{Q}: \mathbb{R}^d \to \mathbb{R}^d$ is unbiased and ω -bounded with $\omega > 0$, namely, $\mathbb{E}[\mathcal{Q}(x)] = x, \quad \|\mathcal{Q}(x) - x\| \leq \omega \|x\|, \quad \text{for any } x \in \mathbb{R}^d.$

Assumption 3 (Lower bound and smoothness). The loss function $f: \mathbb{R}^d \to \mathbb{R}$ is lower bounded by some $f^* \in \mathbb{R}$ and L-smooth, i.e., $\|\nabla f(\theta) - \nabla f(\theta')\| \le L \|\theta - \theta'\|$, for any $\theta, \theta' \in \mathbb{R}^d$.

Assumption 4 (Unbiased and bounded stochastic gradient). For all iterates $t \ge 1$, the stochastic gradient g_t is unbiased and uniformly bounded by a constant $G \geq 0$, i.e., $\mathbb{E}[g_t] = \nabla f(\theta_t)$, $||g_t|| \leq G$.

Assumption 5 (Bounded variance). For all iterates $t \ge 1$, the variance of the stochastic gradient g_t is uniformly bounded by some constant $\sigma^2 \geq 0$, i.e., $\mathbb{E}[\Vert g_t - \nabla f(\theta_t) \Vert^2] \leq \sigma^2$.

Assumption 6 (PL-condition). For some $\mu > 0$ the loss f satisfies Polyak-Lojasiewicz (PL) inequality

 $\|\nabla f(\theta)\|^2 \geq 2\mu(f(\theta) - f^*)$, for any $\theta \in \mathbb{R}^d$.

Theory: Non-convex and PL Convergence Rates

Theorem 1. (Non-convex convergence rate) Let Assumptions 1, 2, 3, 4, 5 hold and $q_{\omega} := (1+\omega)q < 1$.
Then, choosing $\eta = \frac{1}{\sqrt{T}} \leq \frac{\epsilon}{4LC_0}$, MICROADAM (Algorithm 4) satisfies

$$
\frac{1}{T}\sum_{t=1}^T \mathbb{E}[\|\nabla f(\theta_t)\|^2] \le 2C_0 \left(\frac{f(\theta_1) - f^*}{\sqrt{T}} + \frac{L(\sigma^2 + C_2^2 G^2)}{\epsilon \sqrt{T}}\right) + \mathcal{O}\left(\frac{G^3(G+d)}{T}\right)
$$

with constants $C_0 := \sqrt{\frac{4(1+q_{\omega}^2)^3}{(1-q_{\omega}^2)^2}G^2 + \epsilon}$ and $C_2 := \omega q(1 + \frac{2q_{\omega}}{1-q_{\omega}^2})$.

Theorem 2. (PL convergence rate) Let Assumptions 1, 2, 3, 4, 5 and 6 hold, and $q_{\omega} < 1$. Then, choosing $\eta = \frac{C_0 \log T}{\mu T} \leq \frac{\epsilon}{4LC_0}$, MICROADAM (Algorithm 4) satisfies

$$
\mathbb{E}[f(\theta_{T+1})] - f^* \le \frac{f(\theta_1) - f^*}{T} + \frac{\log T}{T} \left(\frac{LC_0^2}{\mu} \frac{\sigma^2 + (C_1 + C_2^2)G^2}{\mu \epsilon} + \frac{C_0(1 + C_1)(1 + d)G^2}{\mu \sqrt{\epsilon}} \right) + \widetilde{\mathcal{O}}\left(\frac{G^4(G+d)}{T^2}\right)
$$

with constant $C_1 := \frac{\beta_1}{1-\beta_1}(1+C_2) + \frac{2q_{\omega}}{1-q^2}$.

Thank you!