MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence

Ionut-Vlad Modoranu¹, Mher Safaryan¹, Grigory Malinovsky², Eldar Kurtic¹, Thomas Robert¹, Peter Richtarik², Dan Alistarh¹

¹ Institute of Science and Technology Austria (ISTA)
 ² King Abdullah University of Science and Technology (KAUST)

November 12th, 2024

Memory usage of Adam

- model size d
- two momentum buffers (**m**, **v**): **2d** additional memory
 - float32 (4 Bytes): **8d** (B)
 - bfloat16 (2 Bytes): **4d** (B)
- Existing work
 - AdamW-8bit: **2d** (B)
 - Can we do better?

MicroAdam

- Designed for finetuning
 - not all gradient entries are necessary for optimization
- Store a window of **m** sparse gradients
 - Top-K
 - 99% sparse
 - store largest 1% components (indices and values)
- Error Feedback
 - stores the compression error and corrects the gradient
 - quantized to 4 bits
- Constructs the Adam update dynamically at each step using CUDA kernels
 We do not store m and v, so no additional memory used
- Memory footprint (bytes)
 - 0.9d compared to 2d for AdamW-8bit

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow \min(a_t), \max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\% m$

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $\blacktriangleright a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\%m$

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathbf{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow \min(a_t), \max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\% m$

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $\Rightarrow a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\%m$
15: end for

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\blacktriangleright \delta_{t+1}, \Delta_{t+1} \leftarrow min(a_t), max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\% m$

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow \min(a_t), \max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\hat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\hat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\theta_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\% m$

1: Input:
$$\beta_1, \beta_2, \epsilon, \mathcal{G}, T, d, k$$

2: $m_0, v_0 \leftarrow 0_d, 0_d$
 $\delta_1, \Delta_1 \leftarrow 0, 0$
 $e_1 \leftarrow 0_d^{4b}$
3: for $t = \{1, 2, ..., T\}$ do
4: $g_t \leftarrow \widetilde{\nabla}_{\theta} f(\theta_t)$
5: $a_t \leftarrow g_t + Q^{-1}(e_t, \delta_t, \Delta_t)$
6: $\mathcal{I}_t, \mathcal{V}_t \leftarrow T_k(|a_t|)$
7: $a_t[\mathcal{I}_t] \leftarrow 0$
8: $\delta_{t+1}, \Delta_{t+1} \leftarrow \min(a_t), \max(a_t)$
9: $e_{t+1} \leftarrow Q(a_t, \delta_{t+1}, \Delta_{t+1})$
10: $\mathcal{G}_{i,:} \leftarrow (\mathcal{I}_t, \mathcal{V}_t)$
11: $\widehat{m}_t \leftarrow \text{ADAMSTATS}(\beta_1, \mathcal{G})$
12: $\widehat{v}_t \leftarrow \text{ADAMSTATS}(\beta_2, \mathcal{G}^2)$
13: $\widehat{v}_{t+1} \leftarrow \theta_t - \eta_t \frac{\hat{m}_t}{\epsilon + \sqrt{\hat{v}_t}}$
14: $i \leftarrow (i+1)\% m$

MicroAdam - LLM Finetuning Results

Table 2: FFT results for Llama-2 7B/13B on GSM-8k.-2 sizeOptimizerAccuracyStateTotal

LLaMA-2 size	Optimizer	Accuracy	State	Total	Runtime
	Adam	34.50%	25.1 GB	55.2 GB	1h 17m
7 B	Adam-8b	34.34%	12.55 GB	42.5 GB	1h 18m
	MICROADAM ($m = 10$)	34.72%	5.65 GB	37.1 GB	1h 8m
	MICROADAM ($m = 20$)	35.10%	8.25 GB	39.7 GB	1h 37m

Theory: Gradient and Error Compression

Assumption 1. The gradient compressor $C : \mathbb{R}^d \to \mathbb{R}^d$ is q-contractive with $0 \le q < 1$, i.e., $\|C(x) - x\| \le q \|x\|$, for any $x \in \mathbb{R}^d$.

Assumption 2. The error compressor $Q : \mathbb{R}^d \to \mathbb{R}^d$ is unbiased and ω -bounded with $\omega \ge 0$, namely, $\mathbb{E}[Q(x)] = x, \quad ||Q(x) - x|| \le \omega ||x||, \quad \text{for any } x \in \mathbb{R}^d.$

Assumption 3 (Lower bound and smoothness). The loss function $f : \mathbb{R}^d \to \mathbb{R}$ is lower bounded by some $f^* \in \mathbb{R}$ and L-smooth, i.e., $\|\nabla f(\theta) - \nabla f(\theta')\| \le L \|\theta - \theta'\|$, for any $\theta, \theta' \in \mathbb{R}^d$.

Assumption 4 (Unbiased and bounded stochastic gradient). For all iterates $t \ge 1$, the stochastic gradient g_t is unbiased and uniformly bounded by a constant $G \ge 0$, i.e., $\mathbb{E}[g_t] = \nabla f(\theta_t)$, $||g_t|| \le G$.

Assumption 5 (Bounded variance). For all iterates $t \ge 1$, the variance of the stochastic gradient g_t is uniformly bounded by some constant $\sigma^2 \ge 0$, i.e., $\mathbb{E}[\|g_t - \nabla f(\theta_t)\|^2] \le \sigma^2$.

Assumption 6 (PL-condition). For some $\mu > 0$ the loss f satisfies Polyak-Lojasiewicz (PL) inequality

 $\|\nabla f(\theta)\|^2 \ge 2\mu(f(\theta) - f^*), \quad \text{for any } \theta \in \mathbb{R}^d.$

Theory: Non-convex and PL Convergence Rates

Theorem 1. (Non-convex convergence rate) Let Assumptions 1, 2, 3, 4, 5 hold and $q_{\omega} := (1+\omega)q < 1$. Then, choosing $\eta = \frac{1}{\sqrt{T}} \leq \frac{\epsilon}{4LC_0}$, MICROADAM (Algorithm 4) satisfies

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(\theta_t)\|^2] \le 2C_0 \left(\frac{f(\theta_1) - f^*}{\sqrt{T}} + \frac{L(\sigma^2 + C_2^2 G^2)}{\epsilon \sqrt{T}}\right) + \mathcal{O}\left(\frac{G^3(G+d)}{T}\right)$$

with constants $C_0 := \sqrt{\frac{4(1+q_\omega^2)^3}{(1-q_\omega^2)^2}}G^2 + \epsilon$ and $C_2 := \omega q(1+\frac{2q_\omega}{1-q_\omega^2}).$

Theorem 2. (PL convergence rate) Let Assumptions 1, 2, 3, 4, 5 and 6 hold, and $q_{\omega} < 1$. Then, choosing $\eta = \frac{C_0 \log T}{\mu T} \leq \frac{\epsilon}{4LC_0}$, MICROADAM (Algorithm 4) satisfies

$$\mathbb{E}[f(\theta_{T+1})] - f^* \le \frac{f(\theta_1) - f^*}{T} + \frac{\log T}{T} \left(\frac{LC_0^2}{\mu} \frac{\sigma^2 + (C_1 + C_2^2)G^2}{\mu\epsilon} + \frac{C_0(1 + C_1)(1 + d)G^2}{\mu\sqrt{\epsilon}} \right) + \widetilde{\mathcal{O}}\left(\frac{G^4(G + d)}{T^2}\right)$$

with constant $C_1 := \frac{\beta_1}{1-\beta_1}(1+C_2) + \frac{2q_\omega}{1-q_\omega^2}$.

Thank you!