

#### Hyper-opinion Evidential Deep Learning for Out-of-Distribution Detection

Jingen Qu  $\cdot$  Yufei Chen  $\cdot$  Xiaodong Yue  $\cdot$  Wei Fu  $\cdot$  Qiguang Huang

## Hyper-opinion Evidential Learning(under review)

#### **Subjective Logic**

Subjective Logic (SL) is a theory of uncertain reasoning based on probability theory and belief theory in a **domain** X, which represents the set of exclusive possible states of a variable situation, such as class labels. It introduces the concepts of belief mass and uncertainty mass to describe the degree of belief and uncertainty about an event.

For example:

$$u + \sum_{k=1}^{K} b_k = 1$$

And the projected probability distribution derived from the opinion in SL corresponds to the expected probability distribution derived from a Dirichlet distribution as:

$$\boldsymbol{\omega} = (\boldsymbol{b}, \boldsymbol{u}, \boldsymbol{a}) \leftrightarrow Dir(\boldsymbol{P} | \boldsymbol{\alpha})$$

And  $\alpha$  can be calculated through the evidence outputted by neural network. Therefore the neural network becomes uncertainty-aware.







- Existing methods apply multinomial-opinion in SL, which only contains the belief mass for singletons and ignore the belief mass for composite sets that contain multiple singletons.
- We apply hyper-opinion in SL. It allows us to consider both belief mass assigned to singletons and composite sets.



- Uncertainty of ID samples in EDL Uncertainty of ID samples in HEDL Uncertainty of ID
- In addition, the parameters of fully-connected layer in EDL models are facing vanishing gradient problem when number of category in datasets rises
- Hyper-opinion Evidential Deep Learning (HEDL) projects hyper-opinion to multinomial-opinion, mitigating the vanishing gradient problem, while preserving computational efficiency.









Our method models the evidence in hyper-domain  $\mathcal{R}(X)$  with hyper-opinion, which provides a belief mass  $b_x^H$ ,  $x \in \mathcal{R}(X)$  representing the belief degree of set x. Along with  $a^H$  and u, the three compose a hyper-opinion:

$$\begin{split} b^{H} &: \mathcal{R}(\mathbb{X}) \to [0, 1] \\ u + \sum_{x \in \mathcal{R}(\mathbb{X})} b_{x}^{H} = 1. \\ \omega^{H} &= \left( \boldsymbol{b}^{H}, u, \boldsymbol{a}^{H} \right) \leftrightarrow Dir^{H} \left( \boldsymbol{P} \left| \boldsymbol{\alpha}^{H} \right] \end{split}$$

We build Dirichlet hyper distribution on the features the neural network extracted.



|                                                                                                                                                                                           | OOD Datasets                                                                                                                       |                                                                                                                                            |                                                                                                                                     |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                                     | ID data                                                                                                                                    |                                                                                                                                     | OOD Datasets                                                                                                                        |                                                                                                                                     |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                            | ID data                                                                                                                             |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                     |                                                                                                                                            |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method                                                                                                                                                                                    | FPR95↓                                                                                                                             | SVHN<br>AUPR↑                                                                                                                              | AUROC↑                                                                                                                              | FPR95↓                                                                                                                              | Textures<br>AUPR↑                                                                                                          | AUROC†                                                                                                                     | FPR95↓                                                                                                                              | Place365<br>AUPR↑                                                                                                                          | <b>AUROC</b> ↑                                                                                                                      | FPR95↓                                                                                                                              | Average<br>AUPR↑                                                                                                                    | AUROC†                                                                                                                              | Acc.↑                                                                                                                                        | FPR95↓                                                                                                                              | SVHN<br>AUPR↑                                                                                                                              | AUROC↑                                                                                                                              | FPR95↓                                                                                                                              | Textures<br>AUPR↑                                                                                                                   | AUROC†                                                                                                                                              | FPR95↓                                                                                                                                     | Place365<br>AUPR↑                                                                                                                   | AUROC†                                                                                                                              | FPR95↓                                                                                                                              | Average<br>AUPR↑                                                                                                           | AUROC†                                                                                                                              | Acc.↑                                                                                                                                                                   |
|                                                                                                                                                                                           | CIFAR-10                                                                                                                           |                                                                                                                                            |                                                                                                                                     |                                                                                                                                     |                                                                                                                            |                                                                                                                            |                                                                                                                                     |                                                                                                                                            | CIFAR-100                                                                                                                           |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |                                                                                                                                              |                                                                                                                                     |                                                                                                                                            |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |                                                                                                                                                     |                                                                                                                                            |                                                                                                                                     |                                                                                                                                     |                                                                                                                                     |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                         |
| MSP[16]<br>ODIN[29]<br>openGAN[24]<br>GradNorm[21]<br>VIM[60]<br>KNN[55]<br>DICE[53]<br>RankFeat[52]<br>ASH[8]<br>SHE[64]<br>GEN[32]<br>MCDropout[12]<br>G-ODIN[19]<br>CSI[56]<br>MOS[20] | 51.87<br>67.92<br>99.39<br>91.65<br>14.41<br>33.32<br>67.78<br>64.49<br>83.64<br>62.74<br>28.14<br>44.58<br>8.42<br>17.56<br>90.85 | 78.19<br>42.13<br>33.90<br>78.89<br>93.76<br>92.31<br>73.19<br>80.33<br>89.06<br>94.46<br>96.37<br>85.03<br>96.63<br><b>97.75</b><br>70.55 | 90.88<br>73.32<br>53.56<br>53.91<br>97.22<br>95.13<br>86.43<br>68.15<br>73.46<br>86.38<br>91.97<br>92.67<br>98.41<br>95.18<br>51.09 | 59.89<br>51.10<br>98.24<br>98.09<br>20.78<br>46.01<br>67.48<br>59.71<br>84.59<br>84.60<br>40.74<br>56.60<br>23.32<br>28.95<br>85.56 | 91.28<br>82.25<br>61.48<br>48.05<br>95.93<br>85.38<br>55.39<br>72.85<br>77.28<br>84.71<br>91.74<br>96.03<br>82.99<br>90.89 | 88.72<br>80.70<br>42.22<br>52.07<br>96.06<br>92.77<br>80.14<br>73.46<br>77.45<br>81.57<br>90.14<br>88.83<br>90.71<br>52.91 | 57.64<br>50.51<br>99.44<br>92.46<br>47.52<br>43.78<br>56.06<br>43.70<br>77.89<br>76.36<br>47.03<br>56.20<br>39.80<br>34.76<br>71.74 | 70.24<br>50.27<br>19.55<br>86.63<br>72.83<br>80.15<br>57.52<br>94.66<br>94.04<br>94.88<br>96.67<br>67.20<br>75.49<br><b>96.38</b><br>78.67 | 89.03<br>82.55<br>36.58<br>60.50<br>90.08<br>91.82<br>84.43<br>85.99<br>79.89<br>82.89<br>89.46<br>88.43<br>91.10<br>89.56<br>74.15 | 56.47<br>56.51<br>99.02<br>94.07<br>27.57<br>41.04<br>63.78<br>55.97<br>82.04<br>74.57<br>38.64<br>52.47<br>23.84<br>27.09<br>82.71 | 79.90<br>58.22<br>38.31<br>71.19<br>87.98<br>89.47<br>72.03<br>76.79<br>85.32<br>88.87<br>92.58<br>81.32<br>89.39<br>92.37<br>80.03 | 89.54<br>78.86<br>44.12<br>55.49<br>94.46<br>93.23<br>83.66<br>75.87<br>76.93<br>83.61<br>90.52<br>89.98<br>94.67<br>91.82<br>59.38 | 95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>95.06<br>94.95<br>94.70<br>91.16<br>94.83 | 83.69<br>89.76<br>83.96<br>69.90<br>82.79<br>74.27<br>79.93<br>58.49<br>46.00<br>59.15<br>55.45<br>71.63<br>71.62<br>67.21<br>90.58 | 60.76<br>52.36<br>60.85<br>89.45<br>72.82<br>71.46<br>65.95<br>83.40<br><b>92.97</b><br>90.85<br>90.36<br>67.44<br>79.80<br>91.76<br>74.48 | 76.04<br>71.08<br>78.68<br>76.95<br>81.20<br>82.21<br>79.97<br>72.14<br>85.60<br>80.97<br>81.41<br>81.31<br>86.13<br>80.24<br>59.42 | 83.83<br>78.37<br>86.31<br>92.51<br>55.90<br>66.40<br>80.53<br>66.87<br>61.27<br>73.29<br>61.23<br>80.16<br>58.01<br>90.51<br>96.32 | 85.24<br>86.67<br>80.18<br>56.77<br>92.15<br>89.44<br>85.41<br>52.42<br>68.97<br>60.87<br>64.52<br>86.01<br>93.01<br>51.46<br>89.60 | 76.93<br>79.39<br>73.53<br>64.58<br>87.41<br>83.81<br>77.70<br>69.40<br>80.72<br>73.64<br>78.74<br>78.74<br>77.93<br><b>88.35</b><br>62.22<br>46.69 | 81.24<br>81.27<br>88.37<br>95.32<br>83.85<br>78.74<br>80.75<br>77.42<br>62.95<br>65.24<br><b>56.25</b><br>79.52<br>78.67<br>69.41<br>92.64 | 62.39<br>60.85<br>38.87<br>88.78<br>56.24<br>57.47<br>62.76<br>83.74<br>91.48<br>90.31<br>91.90<br>61.34<br>55.45<br>88.16<br>71.87 | 79.44<br>79.83<br>70.15<br>69.69<br>75.76<br>79.10<br>80.18<br>63.82<br>78.76<br>76.30<br>80.28<br>79.20<br>78.15<br>70.99<br>60.95 | 82.91<br>83.13<br>86.21<br>85.91<br>74.18<br>73.13<br>80.40<br>67.59<br>56.74<br>65.89<br>57.64<br>77.11<br>69.44<br>75.71<br>93.18 | 69.46<br>66.62<br>59.96<br>78.33<br>73.74<br>72.79<br>71.37<br>73.19<br>84.47<br>80.68<br>82.26<br>71.60<br>77.13<br>78.64 | 77.47<br>76.77<br>74.12<br>70.41<br>81.46<br>81.71<br>79.28<br>68.45<br>81.69<br>76.97<br>80.14<br>79.48<br>84.21<br>71.15<br>55.69 | 77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25<br>77.25 |
| VOS[9]<br>LogitNorm[61]<br>EDL[48]<br>RED[43]                                                                                                                                             | 29.92<br><b>5.30</b><br>11.56<br>65.75                                                                                             | 83.73<br>97.70<br>88.60<br>29.85                                                                                                           | 93.82<br>98.86<br>93.92<br>61.30                                                                                                    | 37.38<br>30.94<br>19.95<br>86.49                                                                                                    | 92.72<br>96.32<br>99.07<br>71.56                                                                                           | 91.26<br>94.30<br>95.70<br>28.06                                                                                           | 45.37<br>31.17<br>19.36<br>72.37                                                                                                    | 63.93<br>88.11<br>93.15<br>19.83                                                                                                           | 88.73<br>94.76<br><b>96.54</b><br>51.16                                                                                             | 37.55<br>22.47<br>16.96<br>74.87                                                                                                    | 80.13<br>94.04<br>93.61<br>40.41                                                                                                    | 91.27<br>95.97<br>95.39<br>46.84                                                                                                    | 95.82<br>94.30<br>95.72<br>95.80                                                                                                             | 98.62<br>79.16<br>93.05<br>90.09                                                                                                    | 56.36<br>75.57<br>75.48<br>62.75                                                                                                           | 68.99<br>83.03<br>81.39<br>76.41                                                                                                    | 94.54<br>87.06<br>95.48<br>56.01                                                                                                    | 76.20<br>79.08<br>93.80<br>96.25                                                                                                    | 68.33<br>71.53<br>71.60<br>85.29                                                                                                                    | 97.81<br>80.20<br>99.30<br>68.11                                                                                                           | 43.20<br>63.10<br>68.57<br>64.75                                                                                                    | 68.21<br>79.84<br>76.55<br>84.46                                                                                                    | 96.99<br>82.14<br>95.94<br>71.40                                                                                                    | 58.59<br>72.58<br>79.28<br>74.58                                                                                           | 68.51<br>78.13<br>76.51<br>82.05                                                                                                    | 77.20<br>76.34<br>71.40<br>80.36                                                                                                                                        |
| HEDL(Ours)                                                                                                                                                                                | 8.43                                                                                                                               | 94.09                                                                                                                                      | 96.86                                                                                                                               | 19.15                                                                                                                               | 99.19                                                                                                                      | 96.23                                                                                                                      | 19.08                                                                                                                               | 90.14                                                                                                                                      | 95.71                                                                                                                               | 15.55                                                                                                                               | 94.47                                                                                                                               | 96.27                                                                                                                               | 95.66                                                                                                                                        | 39.56                                                                                                                               | 89.22                                                                                                                                      | 93.46                                                                                                                               | 61.97                                                                                                                               | 96.85                                                                                                                               | 85.98                                                                                                                                               | 63.89                                                                                                                                      | 81.14                                                                                                                               | 89.32                                                                                                                               | 55.14                                                                                                                               | 89.07                                                                                                                      | 89.59                                                                                                                               | 80.40                                                                                                                                                                   |

|                     |               |                    |         | Flow    | er-102   |         | CUB-200-2011 |         |           |         |  |
|---------------------|---------------|--------------------|---------|---------|----------|---------|--------------|---------|-----------|---------|--|
|                     |               |                    | Average | OOD per | formance | ID data | Average      | OOD per | rformance | ID data |  |
| Multinomial-opinion | Hyper-opinion | Opinion-projection | FPR95↓  | AUPR↑   | AUROC↑   | Acc.↑   | FPR95↓       | AUPR↑   | AUROC↑    | Acc.↑   |  |
| -                   | -             | -                  | 14.86   | 95.94   | 97.42    | 83.75   | 30.29        | 91.18   | 94.35     | 75.82   |  |
| $\checkmark$        | -             | -                  | 100.00  | 66.95   | 67.23    | 66.84   | 98.03        | 71.80   | 75.27     | 59.87   |  |
| ✓                   | $\checkmark$  | -                  | 11.90   | 95.83   | 97.61    | 81.40   | 9.32         | 91.57   | 97.82     | 52.30   |  |
| $\checkmark$        | $\checkmark$  | $\checkmark$       | 3.98    | 98.73   | 99.07    | 84.13   | 3.82         | 97.80   | 98.91     | 74.62   |  |



HEDL

In-Distribution

Out-of-Distribution

0.8 1.0

|      |         |         |           |          |         | E 10<br>10<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|------|---------|---------|-----------|----------|---------|-------------------------------------------------------------------------------------------------|
| 2    |         |         | CUB-2     | 00-2011  |         | (a) CIFAR-10, the overlap between ID an<br>and HEDL respectively                                |
| ance | ID data | Average | e OOD per | formance | ID data | EDL                                                                                             |
| ROC↑ | Acc.↑   | FPR95↓  | AUPR↑     | AUROC↑   | Acc.↑   | 30 - 30 - 30 -<br>25 - 0ut-of-Distribution 25 -                                                 |
| .42  | 83.75   | 30.29   | 91.18     | 94.35    | 75.82   | 20-<br>21 5-<br>21 5-                                                                           |
| .22  | 83.75   | 21.92   | 89.92     | 96.22    | 75.82   | 8 <sub>10</sub> .                                                                               |
| .94  | 83.75   | 6.71    | 97.27     | 98.26    | 75.82   | s-                                                                                              |
| .81  | 83.75   | 32.08   | 97.68     | 95.22    | 75.82   | 0-0,0 0,2 0,4 0,6 0,8 1,0 0,0                                                                   |
| .30  | 83.75   | 14.35   | 88.63     | 97.40    | 75.82   | oncertainty                                                                                     |
| .95  | 83.75   | 25.82   | 88.83     | 96.00    | 75.82   | (b) CIFAR-100, the overlap between ID a                                                         |
| .98  | 83.75   | 74.68   | 83.38     | 71.09    | 75.82   | and HEDL, respectively.                                                                         |
| .84  | 83.75   | 15.82   | 92.75     | 97.07    | 75.82   | EDL 14-                                                                                         |
| .79  | 83.75   | 22.94   | 96.14     | 96.18    | 75.82   | 12 - Out-of-Distribution 12 -                                                                   |

(a) CIFAR-10, the overlap between ID and OOD is 20%, 23%, and 18% for EDL, HEDL w/o projection,

0.2 0.4 0.6 0.8 1.0

HEDL w/o projection

In-Distribution

Out-of-Distribution

25

20

0.0 0.2 0.4 0.6

EDL

25

In-Distribution

Out-of-Distribution

25

20



(b) CIFAR-100, the overlap between ID and OOD is 62%, 45%, and 41% for EDL, HEDL w/o projection, and HEDL, respectively.



(c) Flower-102, the overlap between ID and OOD is 71%, 26%, and 29% for EDL, HEDL w/o projection, and HEDL, respectively.



(d) CUB-200-2011, the overlap between ID and OOD is 50%, 20%, and 17% for EDL, HEDL w/o projection, and HEDL, respectively.

|               |         | Flow      | er-102       |         | CUB-200-2011 |                         |        |       |  |  |  |
|---------------|---------|-----------|--------------|---------|--------------|-------------------------|--------|-------|--|--|--|
| Method        | Average | e OOD per | formance     | ID data | Average      | Average OOD performance |        |       |  |  |  |
|               | FPR95↓  | AUPR↑     | AUROC↑       | Acc.↑   | FPR95↓       | AUPR↑                   | AUROC↑ | Acc.↑ |  |  |  |
| MSP[16]       | 14.86   | 95.94     | 97.42        | 83.75   | 30.29        | 91.18                   | 94.35  | 75.82 |  |  |  |
| ODIN[29]      | 4.36    | 97.63     | 98.22        | 83.75   | 21.92        | 89.92                   | 96.22  | 75.82 |  |  |  |
| VIM[60]       | 6.34    | 96.70     | 97.94        | 83.75   | 6.71         | 97.27                   | 98.26  | 75.82 |  |  |  |
| GradNorm[21]  | 5.38    | 97.11     | 98.81        | 83.75   | 32.08        | 97.68                   | 95.22  | 75.82 |  |  |  |
| KNN[55]       | 18.45   | 88.83     | 95.30        | 83.75   | 14.35        | 88.63                   | 97.40  | 75.82 |  |  |  |
| DICE[53]      | 4.64    | 97.62     | 98.95        | 83.75   | 25.82        | 88.83                   | 96.00  | 75.82 |  |  |  |
| RankFeat[52]  | 96.57   | 76.62     | 60.98        | 83.75   | 74.68        | 83.38                   | 71.09  | 75.82 |  |  |  |
| ASH[8]        | 5.16    | 97.54     | 98.84        | 83.75   | 15.82        | 92.75                   | 97.07  | 75.82 |  |  |  |
| SHE[64]       | 11.69   | 93.96     | 97.79        | 83.75   | 22.94        | 96.14                   | 96.18  | 75.82 |  |  |  |
| GEN[32]       | 5.25    | 97.55     | 98.85        | 83.75   | 15.88        | 92.74                   | 97.06  | 75.82 |  |  |  |
| MCDropout[12] | 14.77   | 96.22     | 97.41        | 83.98   | 42.46        | 87.08                   | 91.76  | 75.83 |  |  |  |
| G-ODIN[19]    | 56.92   | 69.88     | 82.12        | 24.30   | 29.51        | 85.13                   | 93.85  | 66.74 |  |  |  |
| VOS[9]        | 39.17   | 84.52     | 90.11        | 78.08   | 35.98        | 83.93                   | 89.86  | 75.92 |  |  |  |
| LogitNorm[61] | 41.07   | 80.34     | 85.65        | 77.41   | 22.69        | 91.69                   | 95.99  | 74.84 |  |  |  |
| EDL[48]       | 100.00  | 66.95     | 67.23        | 66.84   | 98.03        | 71.80                   | 75.27  | 59.87 |  |  |  |
| RED[43]       | 95.87   | 80.10     | 76.45        | 84.63   | 36.01        | 94.58                   | 94.89  | 76.30 |  |  |  |
| HEDL(Ours)    | 3.98    | 98.73     | <b>99.07</b> | 84.13   | 3.82         | 97.80                   | 98.91  | 74.62 |  |  |  |

# Thanks!