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Adversarial Attacks

• Adversarial Attacks generates Adversarial Examples (AEs) by adding subtle 
yet deceptive adversarial perturbations to benign samples. 
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Motivation

AE

Phase

SpectrumPatterns

Amplitude

SpectrumPatterns

Benign

The adversarial perturbation severely damages phase patterns (especially in red 

rectangular) and the frequency spectrum, while amplitude patterns are rarely 

impacted.
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Dual Adversarial Training(DAT)
Motivation：

The robust and perturbed models are trained by PGD-AT-10.

Conclusion:
1.fig(a) shows phase patterns are severely damaged. 

2.fig(b)Some phase patterns are still unaffected by adversarial perturbations.

3.fig(c)Perturbing the amplitude can force the model to focus on phase patterns.
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Dual Adversarial Training(DAT)
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The overview of DAT, which consists of three stages:(Ⅰ) adversarial amplitude generation, (Ⅱ)

AE generation, and (Ⅲ) joint optimization.



Dual Adversarial Training(DAT)

Ensuring that a portion of the original amplitude information is preserved following:

The recombined ො𝐱 is obtained by IDFT:

Adversarial Amplitude Generator
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Dual Adversarial Training(DAT)

Efficient AE Generation

Issues: reducing 𝑡 difficulty of AEs’ reaching the actual maximum in the ℓ∞ − 𝑏𝑎𝑙𝑙.
Generally,  𝑡=10, doubling the training time with vanilla-AT.

Solution: increase adversarial perturbation length in each iteration without change 𝛼.
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Dual Adversarial Training(DAT)

Joint Optimization

Optimization objective for and

follows a sample-dependent conditional distribution

Total loss 

Adversarial Training Loss

Consistency Regularization Loss
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Experiments

Settings Training: 𝝐 =
𝟖

𝟐𝟓𝟓
, 𝜶 =

𝟐

𝟐𝟓𝟓
, 𝒕 = 𝟓 Testing: 𝝐 =

𝟖

𝟐𝟓𝟓

Baselines 
Common methods: PGD-AT, TRADES, MART, ST, SCARL,LAS-AT

Complex methods:  OA-AT, DAJAT, IDBH

Backbones: ResNet-18, WideResNet-34-10, WideResNet-28-10 
Average natural and robust accuracy (%) of ResNet-18 on CIFAR-10
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Experiments

Average natural and robust accuracy (%) of ResNet-18 on CIFAR-100 and Tiny-ImageNet
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Experiments

Average natural and robust accuracy (%) of WideResNet34-10 on CIFAR-10 and CIFAR-100

Average natural and robust accuracy (%) of Complex Methods on CIFAR-10 and CIFAR-100
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Experiments
The average experimental results for different augmentations on CIFAR-10 and CIFAR-100 with ResNet-18

Time consumption (s) of each training epoch for different AT methods on ResNet-18
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Thanks
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