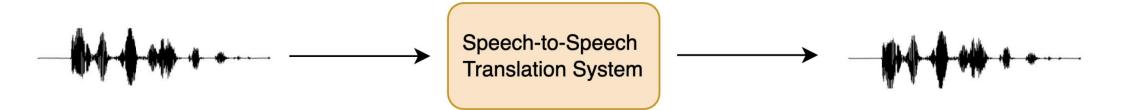
DIFFNORM: SELF-SUPERVISED NORMALIZATION FOR NON-AUTOREGRESSIVE SPEECH-TO-SPEECH TRANSLATION

Weiting Tan, Jingyu Zhang, Lingfeng Shen, Daniel Khashabi, Philipp Koehn



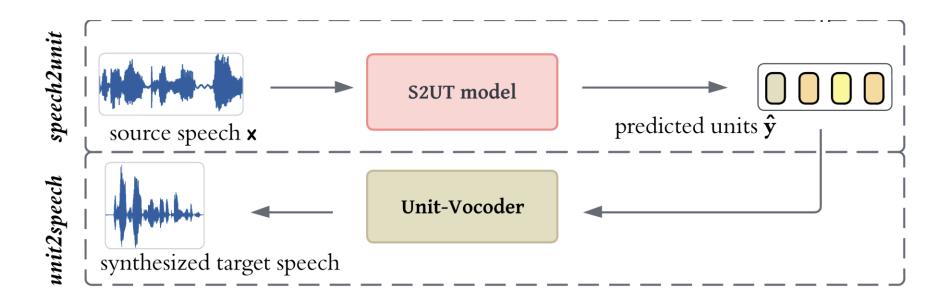
Speech in language X

Speech in language Y

Speech-to-Speech Translation (S2ST)

Two stages

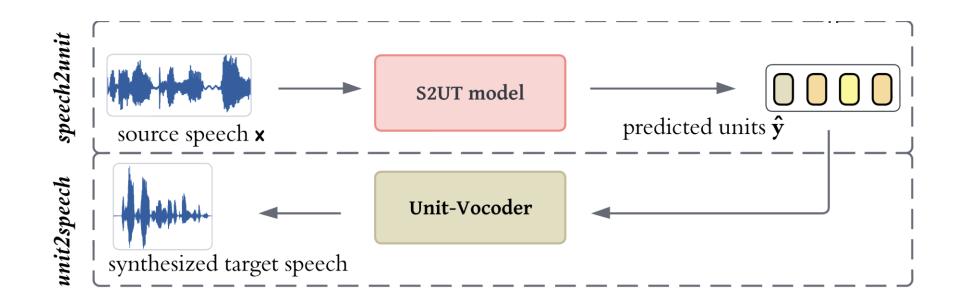
- S2UT (speech-to-unit translation): Convert source speech into target speech units
- Unit-Vocoder: Synthesize target speech from target speech units



Non-autoregressive Speech-to-Speech Translation

S2UT Model

- Transformer/Conformer-based
- Non-autoregressive Transformer (NAT): Masked-Predict Language Model



Non-autoregressive Speech-to-Speech Translation

S2UT Backbone: CMLM [1]

- Source encoded by Transformer/Conformer-Encoder
- Target units predicted by Transformer-Decoder nonautoregressively
 - Use Iterative Refinement during decoding
 - Tokens of all positions are predicted and tokens with TopK prob are kept for next iteration

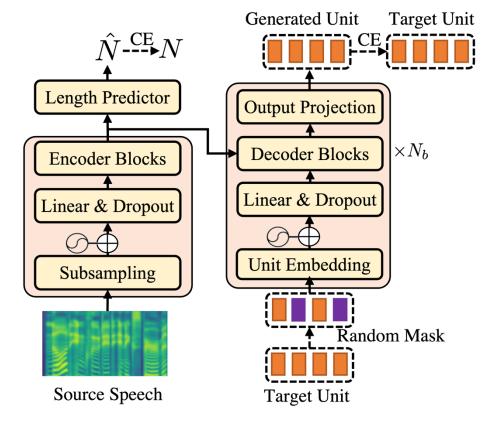
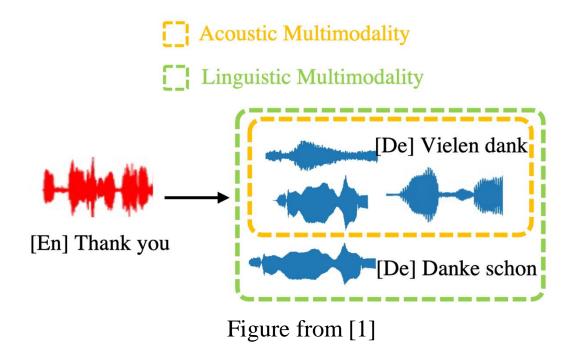


Figure from [2]

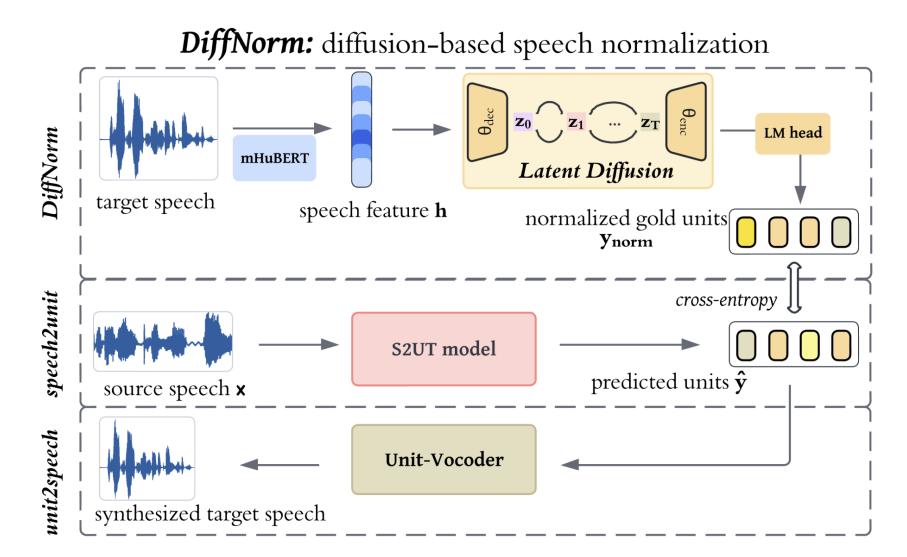
Challenge in Non-autoregressive S2ST

Multi-modality Problem

- Acoustic: the same content can sound differently due to acoustic conditions
- Linguistic: Multiple correct translations exist for the same source speech



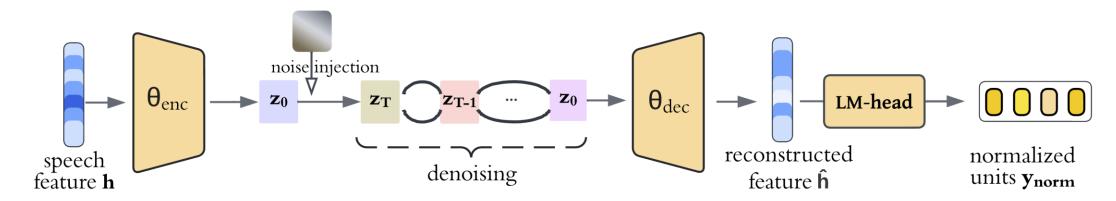
Strategy: Speech Normalization with Diffusion



Strategy: Speech Normalization with Diffusion

Construct Normalized Speech Units:

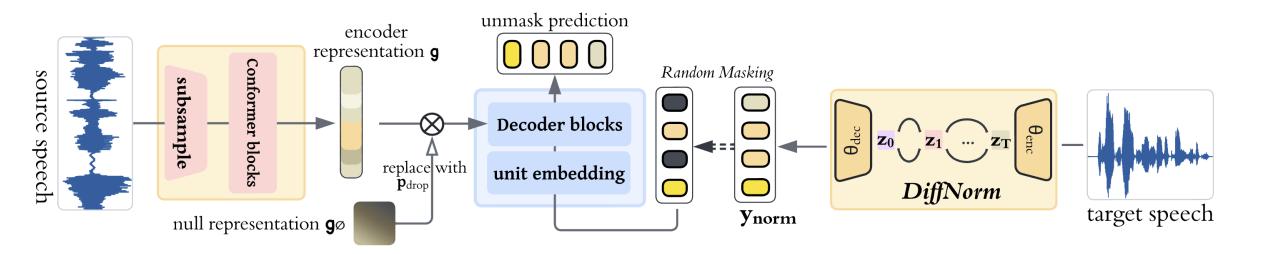
- Train VAE model on target speech feature
- Train Diffusion Model on VAE latents
- Units Construction:
 - Choose a start time T to inject noise into the clean latents $(z_0 \rightarrow z_T)$
 - Denoise with pre-trained Diffusion Model and reconstruct feature
 - Predict normalized speech units with reconstructed feature



CMLM with DiffNorm Units

Training with classifier-guidance (adapted from Diffusion to NAT)

- Randomly replace source representation with null representation
- Improve decoder's iterative decoding quality, especially for long-sequences



Selected Experiment Results

ID	System	Quality \uparrow		Inference Speed †	
		En-Es	En-Fr	Speed	Speedup
Aut	oregressive				
1	Transformer [†] [30]	10.07	15.28	870	1.00×
2	Norm Transformer [†] [31]	12.98	15.93	870	$1.00 \times$
3	Conformer [†]	13.75	17.07	895	$1.02 \times$
Non	n-autoregressive Model				
4	CMLM	12.58	15.62	4651	5.34×
5	$CMLM + BiP^{\dagger}[20]$	12.62	16.97		
Our	r Improved Non-autoregressive M	lodel			
6	CMLM + DIFFNORM	18.96	17.27		
7	$CMLM + CG^{\ddagger}$	17.06	16.89	4651	5.34×
8	CMLM + DIFFNORM + CG [‡]	19.49	17.54		

Table 2: Comparison of speech-to-speech models evaluated by quality (ASR-BLEU) and speed (units/seconds). Results with † are taken from the prior work [20]. ‡ We use w=0.5 for CG. Our NAT models achieve superior translation quality while maintaining their fast inference speed.

Selected Experiment Results

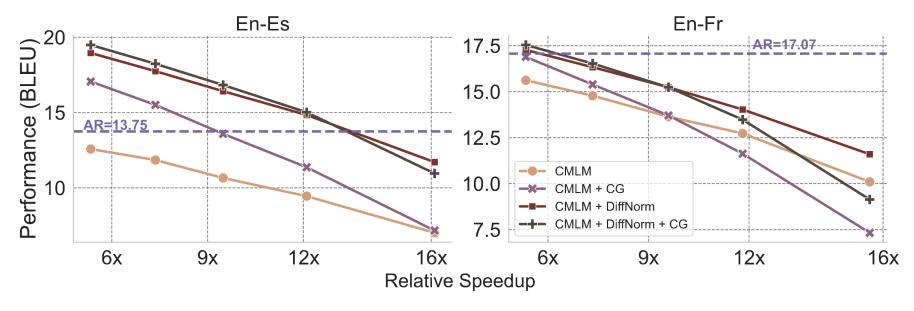


Figure 4: Trade-off between quality (ASR-BLEU) and latency for varying numbers of decoding iterations. Five markers correspond to {15, 10, 7, 5, 3} decoding iterations. Decreasing the number of iterations results in a decline in model performance, traded off for faster speedup. With DIFFNORM and CG, our S2UT model achieves a better quality-latency trade-off than CMLM and outperforms a strong autoregressive baseline with large speedups.

THANK YOU!

Please feel free to reach out to me with questions/suggestions at wtan12@jhu.edu