Trajectory Data Suffices for Statistically Efficient Learning in Offline RL with Linear q^{π} – Realizability and Concentrability

Vlad Tkachuk¹, Gellért Weisz², Csaba Szepesvári^{1,2}

1. University of Alberta, 2. Google Deepmind

Offline RL Needs Less Data if you Have **Trajectories**

Vlad Tkachuk¹, Gellért Weisz², Csaba Szepesvári^{1,2}

1. University of Alberta, 2. Google Deepmind

Motivation (learning with offline data)

Safety concerns (ex: healthcare)

Motivation (learning with offline data)

Safety concerns (ex: healthcare)

There is a lot of offline data available (ex: the entire internet)

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

Overview

Finite-Horizon Markov Decision Process (**MDP**): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$

Finite-Horizon Markov Decision Process (**MDP**): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where \mathcal{S}_h is the set of states at stage h $h \in [H]$

$$[H] = \{1, \dots, H\}$$

Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where \mathcal{S}_h is the set of states at stage h $h \in [H]$

A (Action space): A finite set of actions

$$[H] = \{1, \dots, H\}$$

Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where \mathcal{S}_h is the set of states at stage h $h \in [H]$ A (Action space): A finite set of actions $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$ (Transition function)

 $[H] = \{1, \dots, H\}$ $\mathcal{M}_1(X)$ = Set of probability distributions over the set X

Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where \mathcal{S}_h is the set of states at stage h $h \in [H]$ A (Action space): A finite set of actions $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (**Reward function**) [Deterministic for convenience]

$$[H] = \{1, ..., H\}$$

 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$

Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where \mathcal{S}_h is the set of states at stage h $h \in [H]$ A (Action space): A finite set of actions $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (**Reward function**) [Deterministic for convenience] $H \geq 1$ (Horizon)

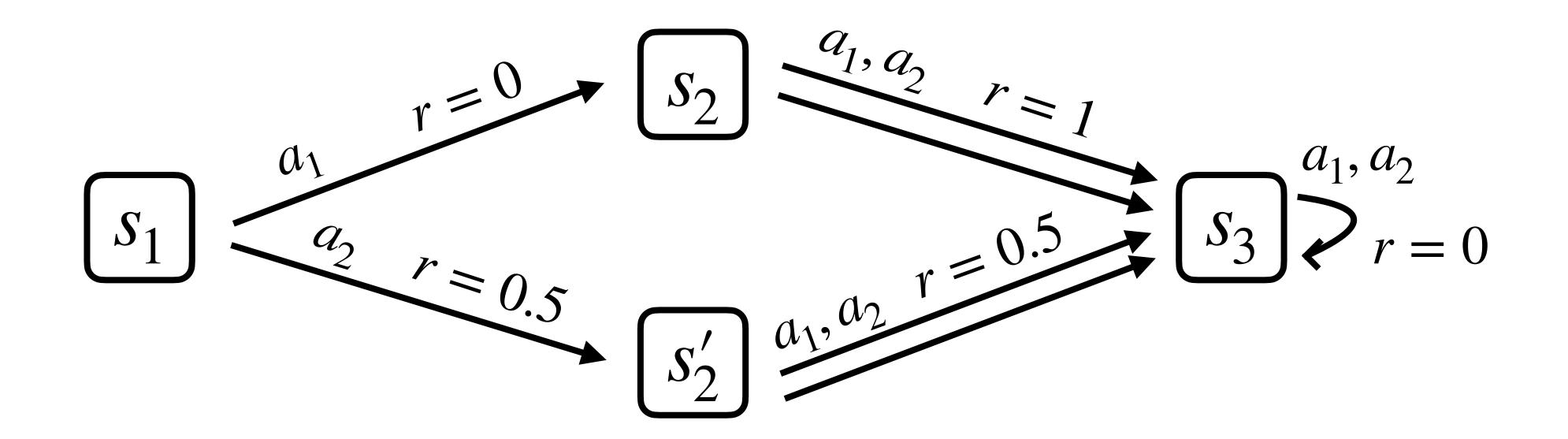
$$[H] = \{1, ..., H\}$$

 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$

Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \begin{bmatrix} \int \mathcal{S}_h \text{ (State space): where } \mathcal{S}_h \text{ is the set of states at stage } h \end{bmatrix}$ $h \in [H]$ A (Action space): A finite set of actions $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (**Reward function**) [Deterministic for convenience] $H \geq 1$ (Horizon) $s_1 \in \mathcal{S}_1$ (Start state)

$$[H] = \{1, ..., H\}$$

 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$



Example: MDP

Agent's Behaviour: Policy

$\pi: \mathcal{S} \to \mathcal{M}_1(\mathcal{A})$ (Policy): A map from states to distributions over actions

 $\mathcal{M}_1(X)$ = Set of probability distributions over the set *X*

Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$: $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$: $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$ (Optimal policy)

Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$: $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$ (Optimal policy)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that: $v^{\pi^*}(S_1)$

$$) - v^{\pi}(s_1) \leq \epsilon$$

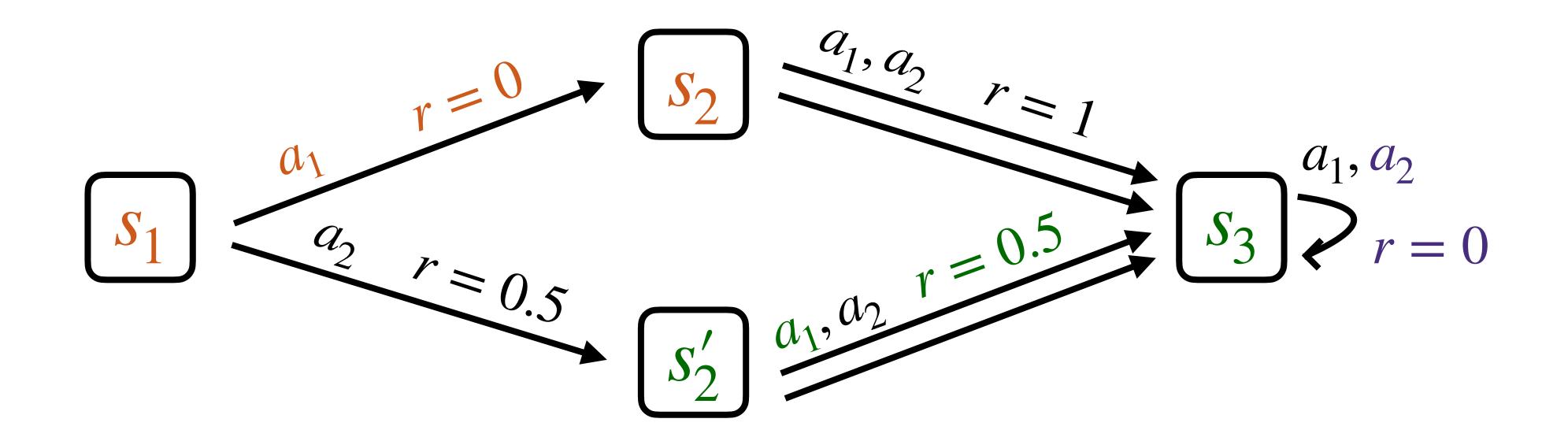
Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$: $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$ (Optimal policy)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a good policy with a small amount of offline data)

Example: Offline Data



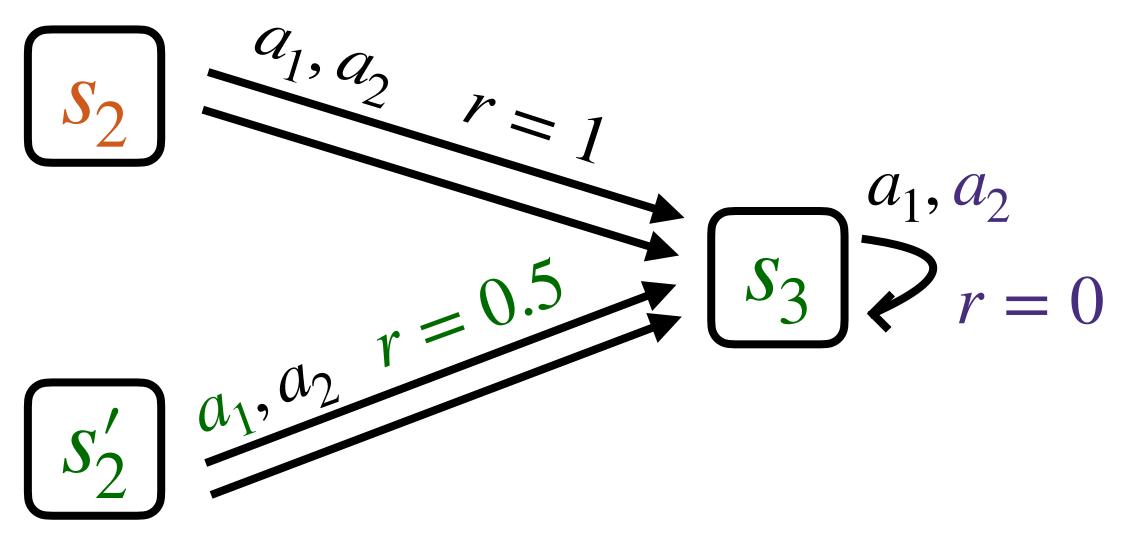
Offline data $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0.5, s_3), (s_3, a_2, 0, s_3))$ h = 119 h = 2h = 3

Example: Offline Data

a2, r=0.5

Notice $s_2 \neq s_2'$

i.e. Not trajectory data



Offline data $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0, 5, s_3), (s_3, a_2, 0, s_3))$ $h = 1 \qquad h = 2 \qquad h = 3$ 20

The State Space is Very Very Large!

The number of states $|\mathcal{S}|$ can be very large!

Examples: Chess, Robotics, Go, Self-driving, etc.

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \le \epsilon$
- (i.e. Find a good policy with a small amount of offline data)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a good policy with a small amount of offline data)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, d, |\mathcal{A}|)$, find a policy π such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \le \epsilon$
- (i.e. Find a good policy with a small amount of offline data)

Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

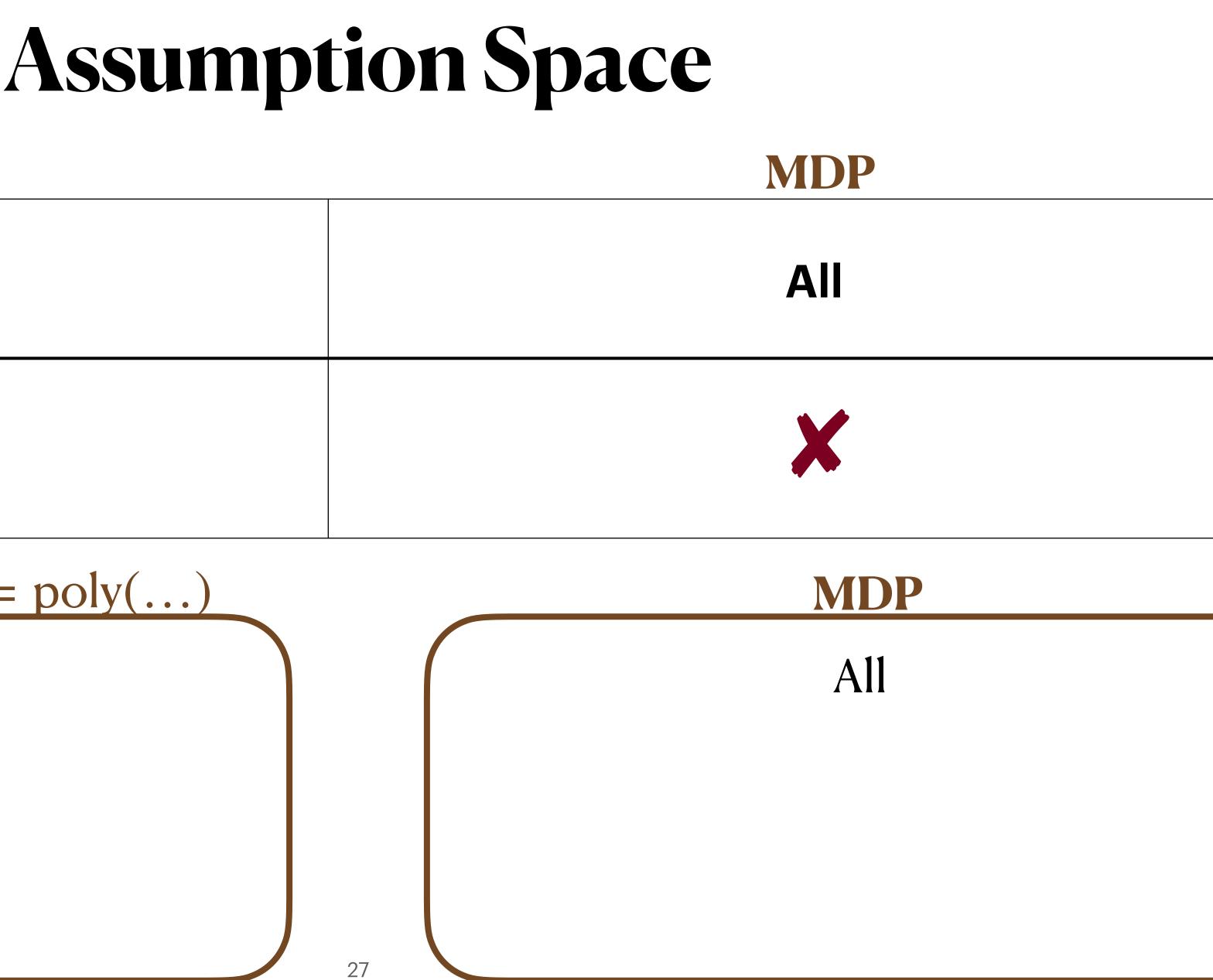
What is the problem?
What did we know?
What we know now!
How we know it...
What's next?

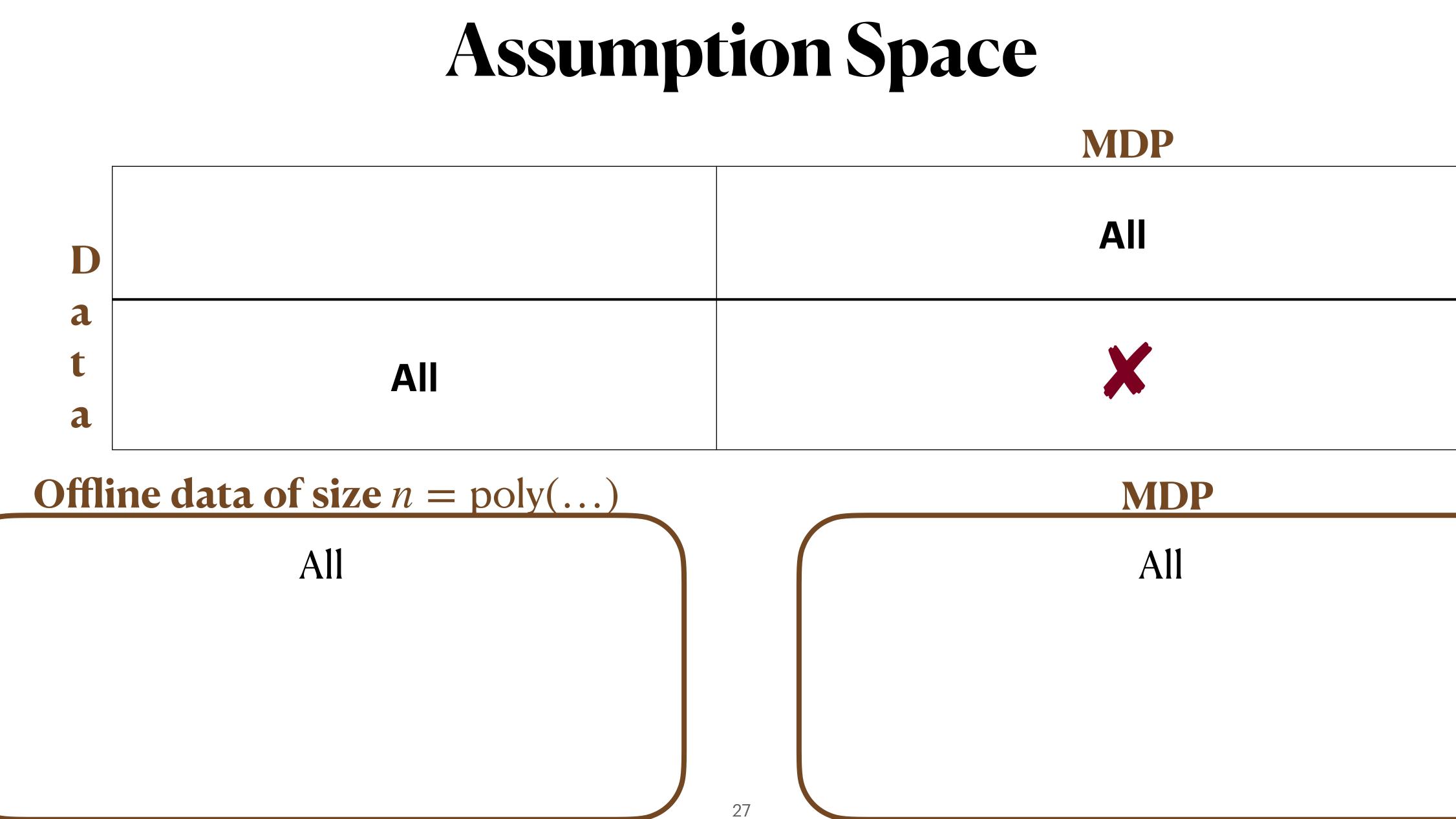
Offline data of size n = poly(...)

All

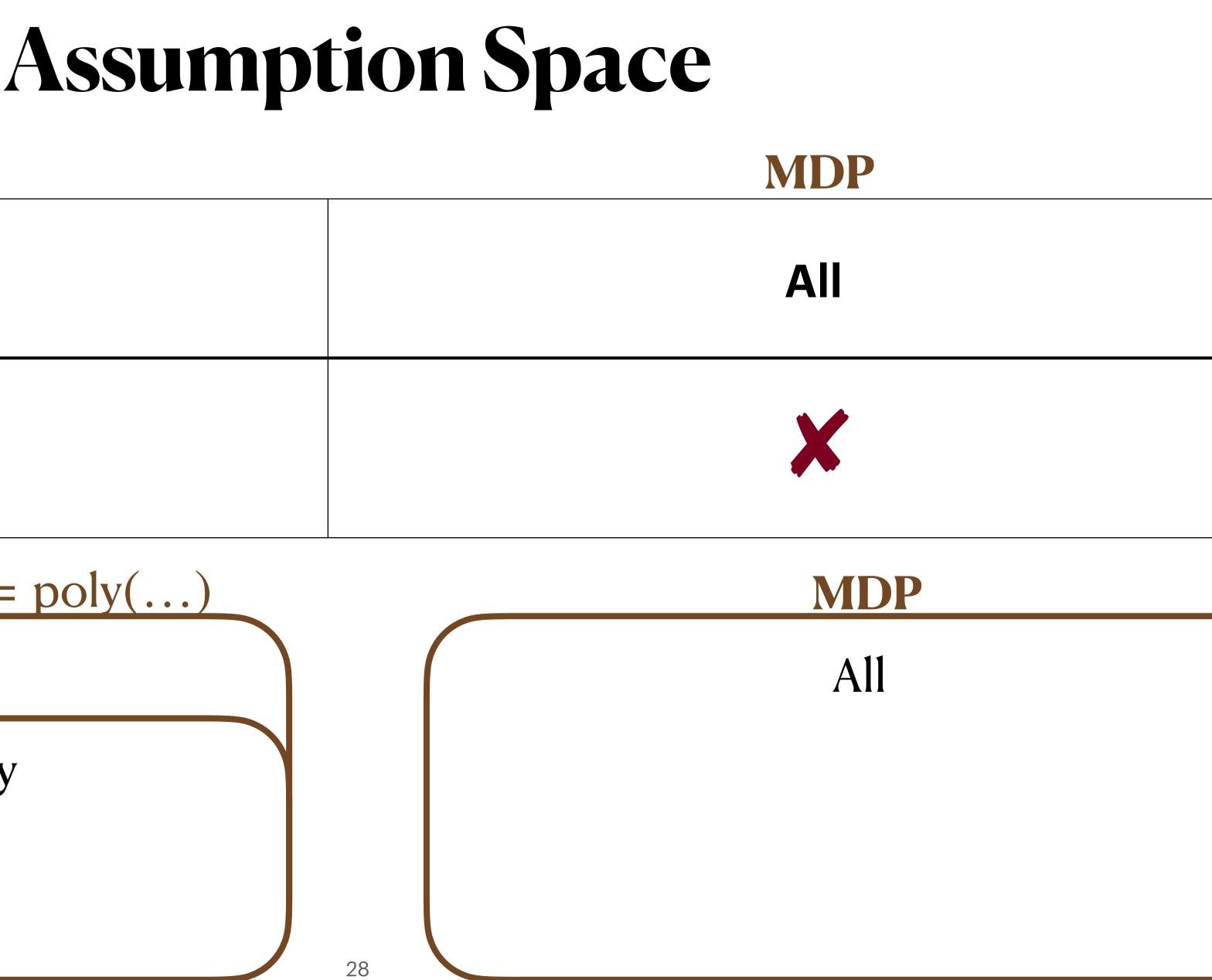
Assumption Space

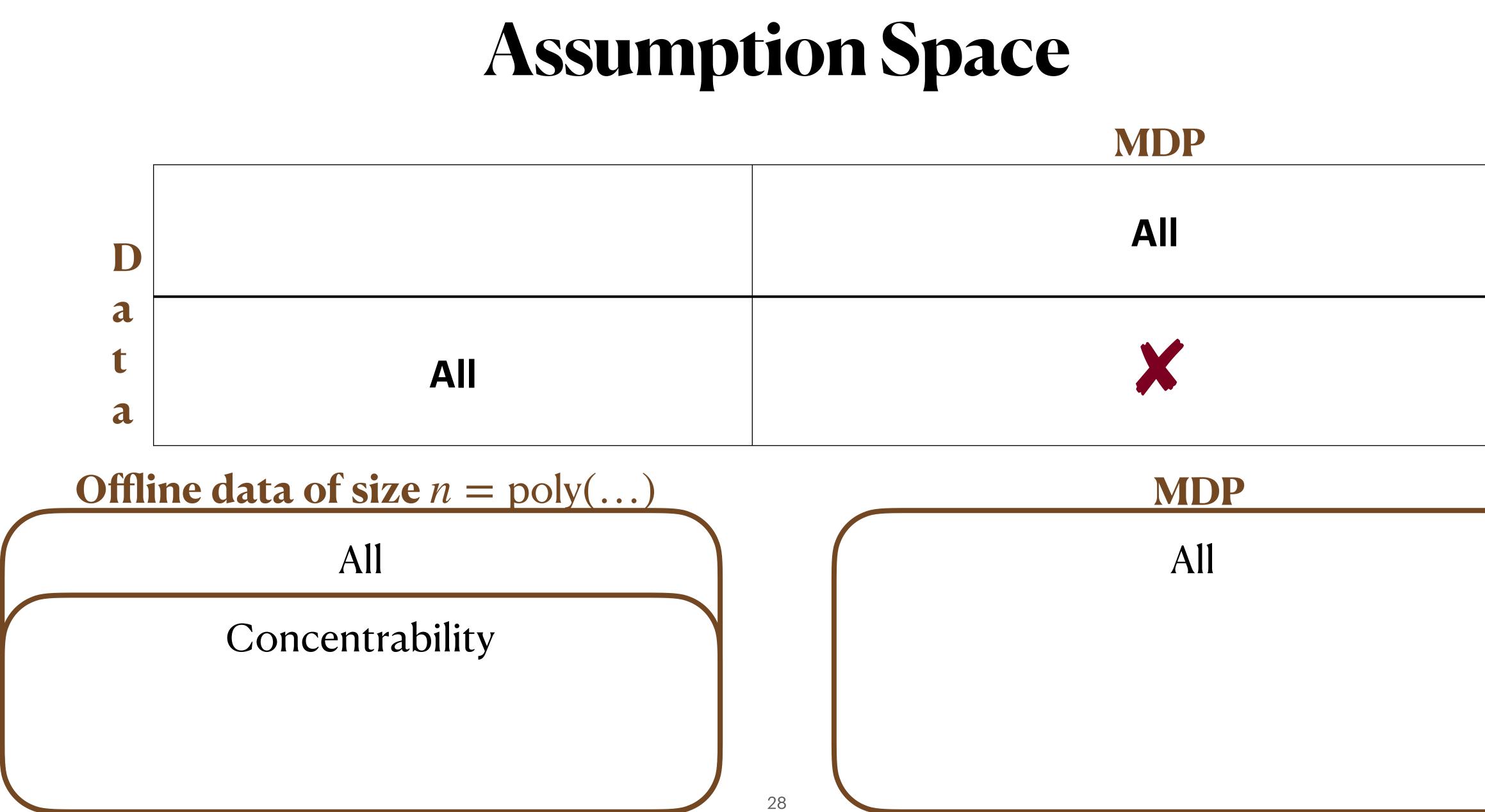
MDP All



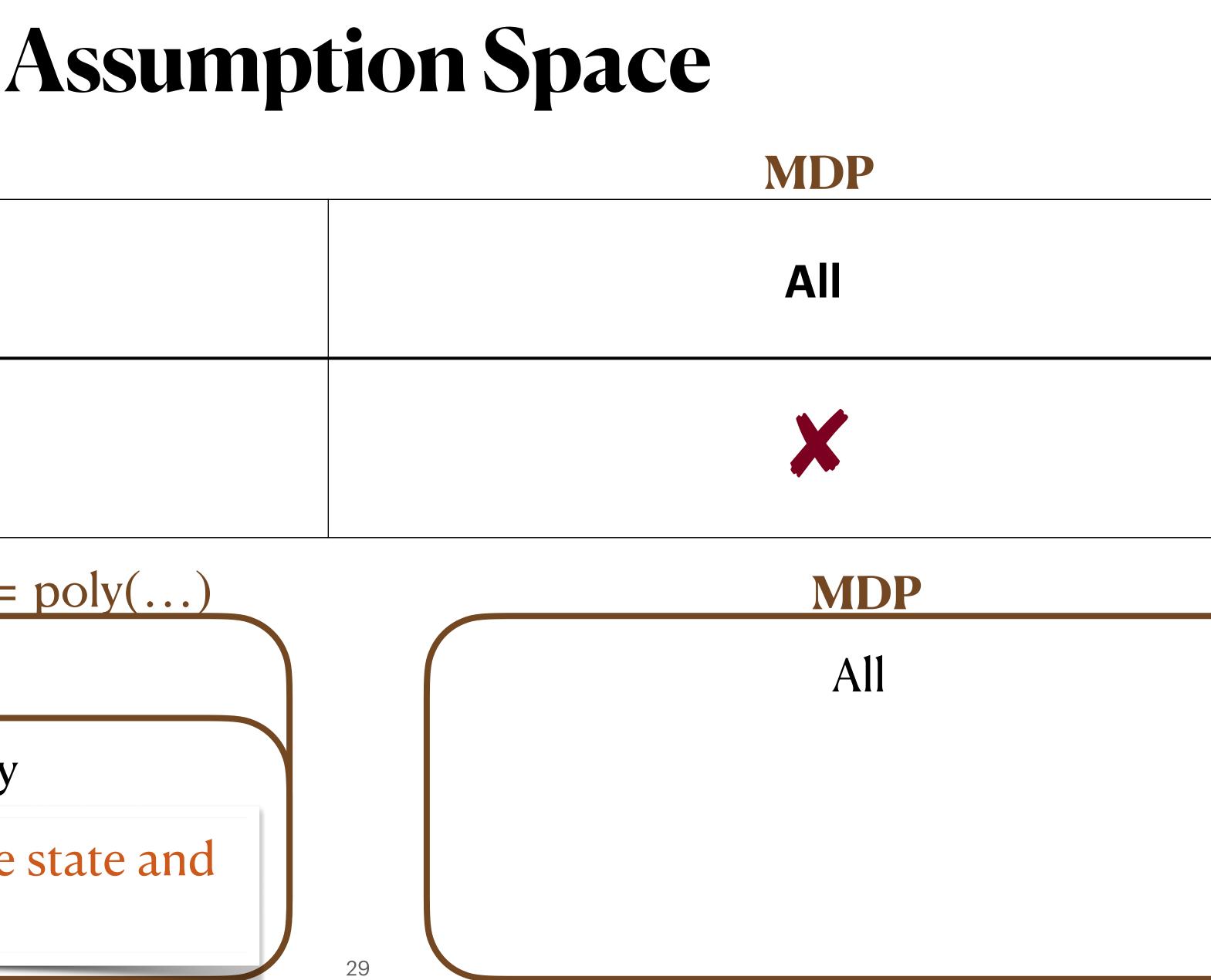


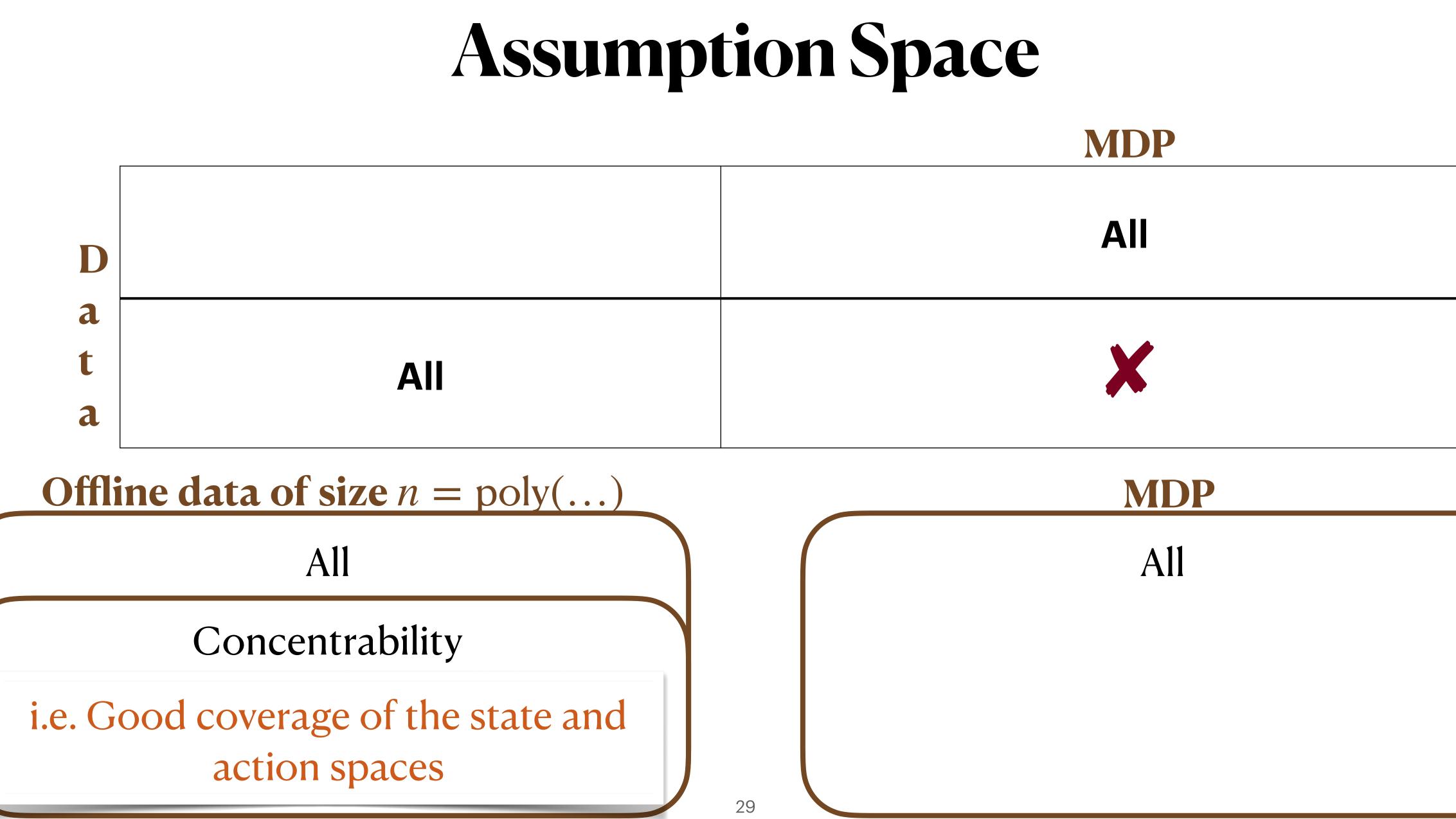




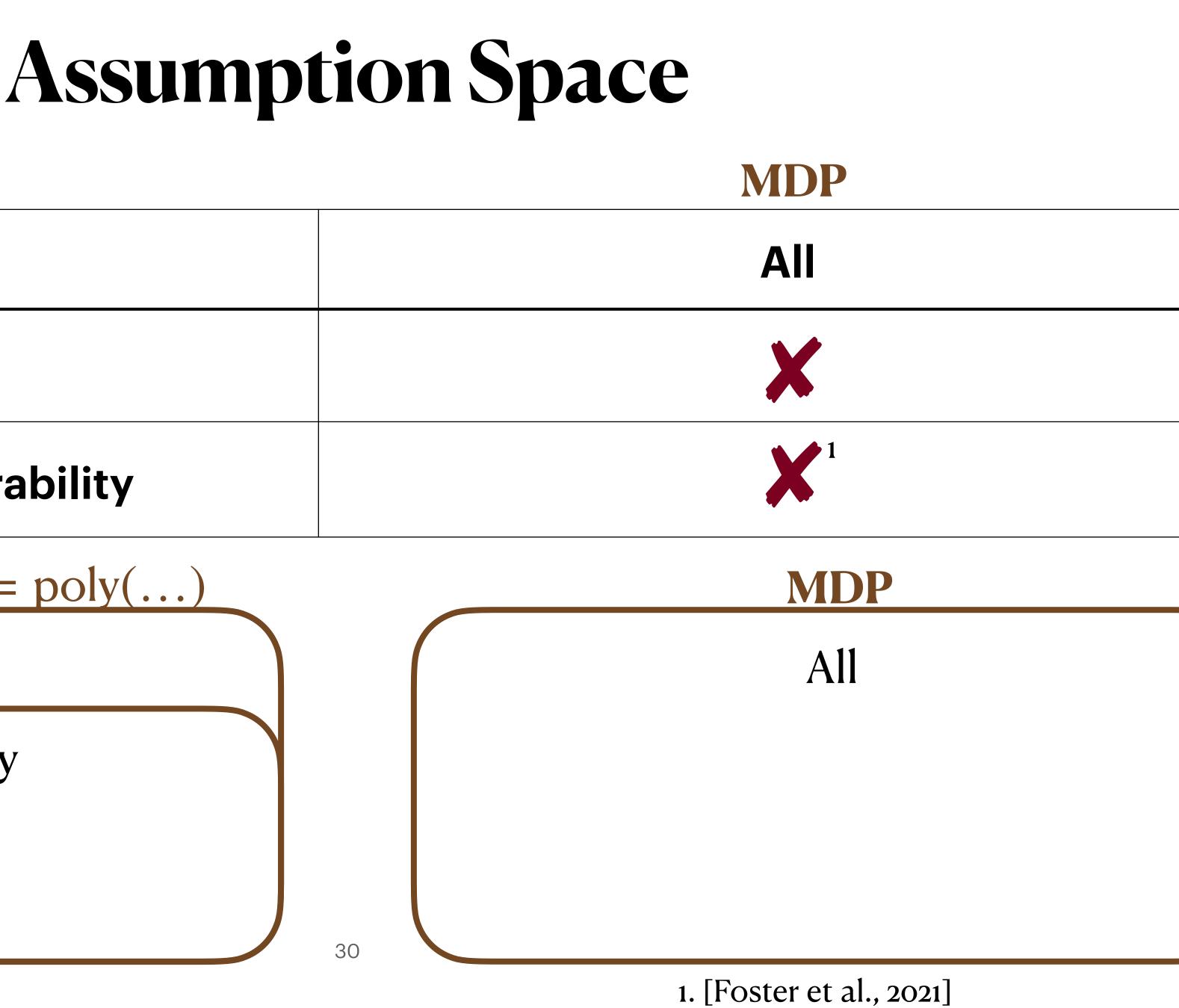


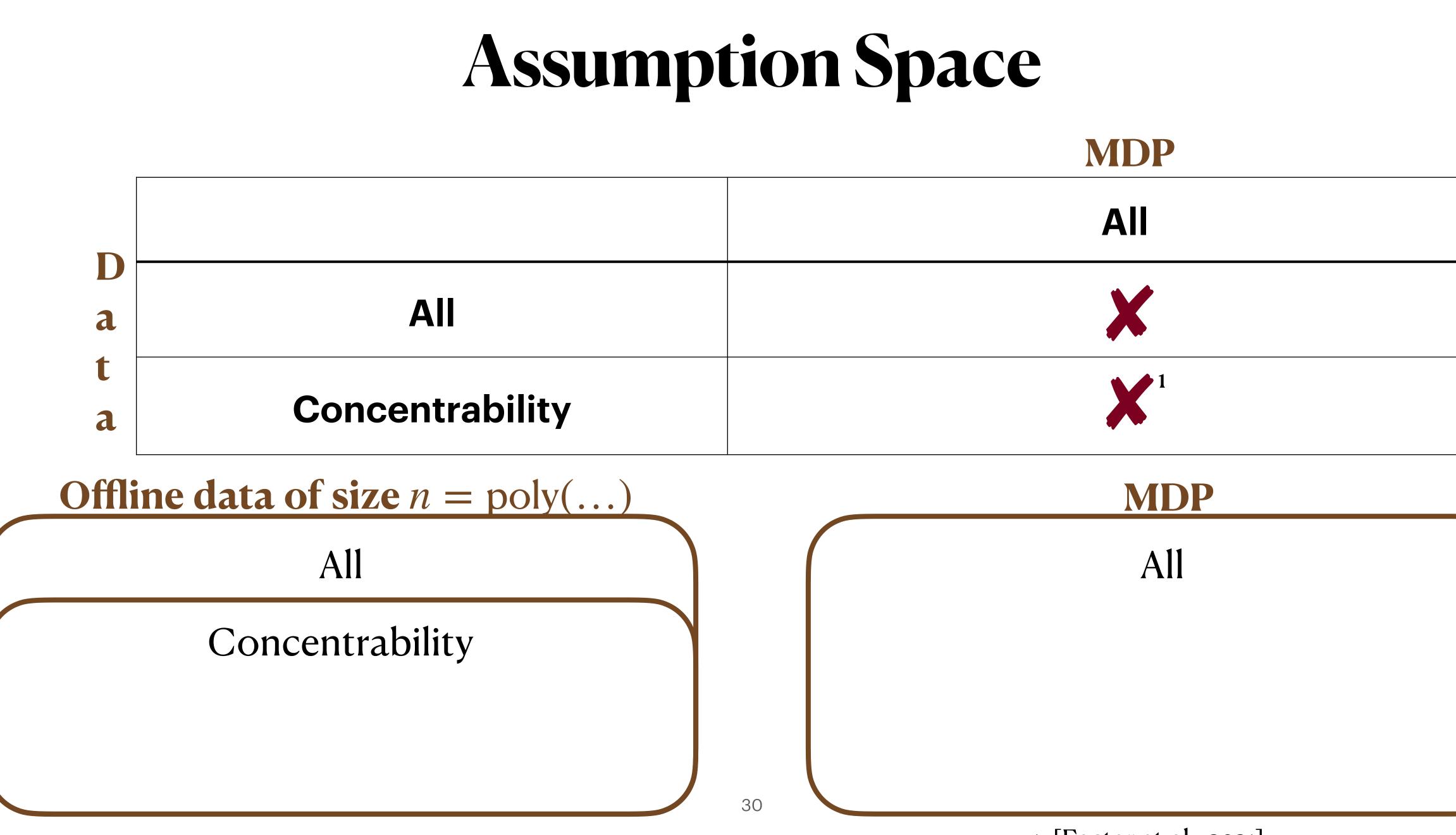


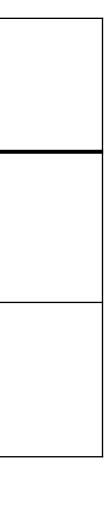


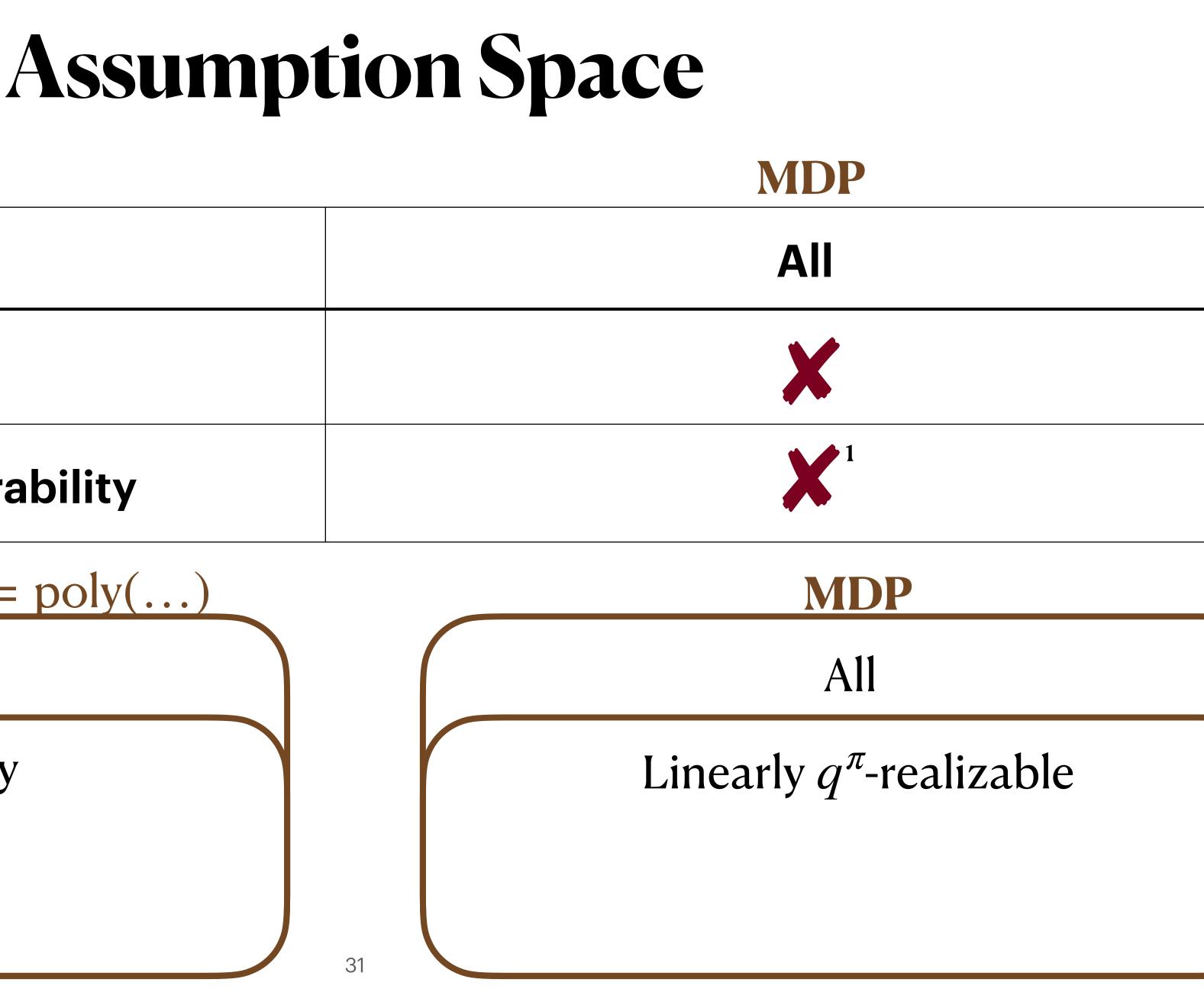


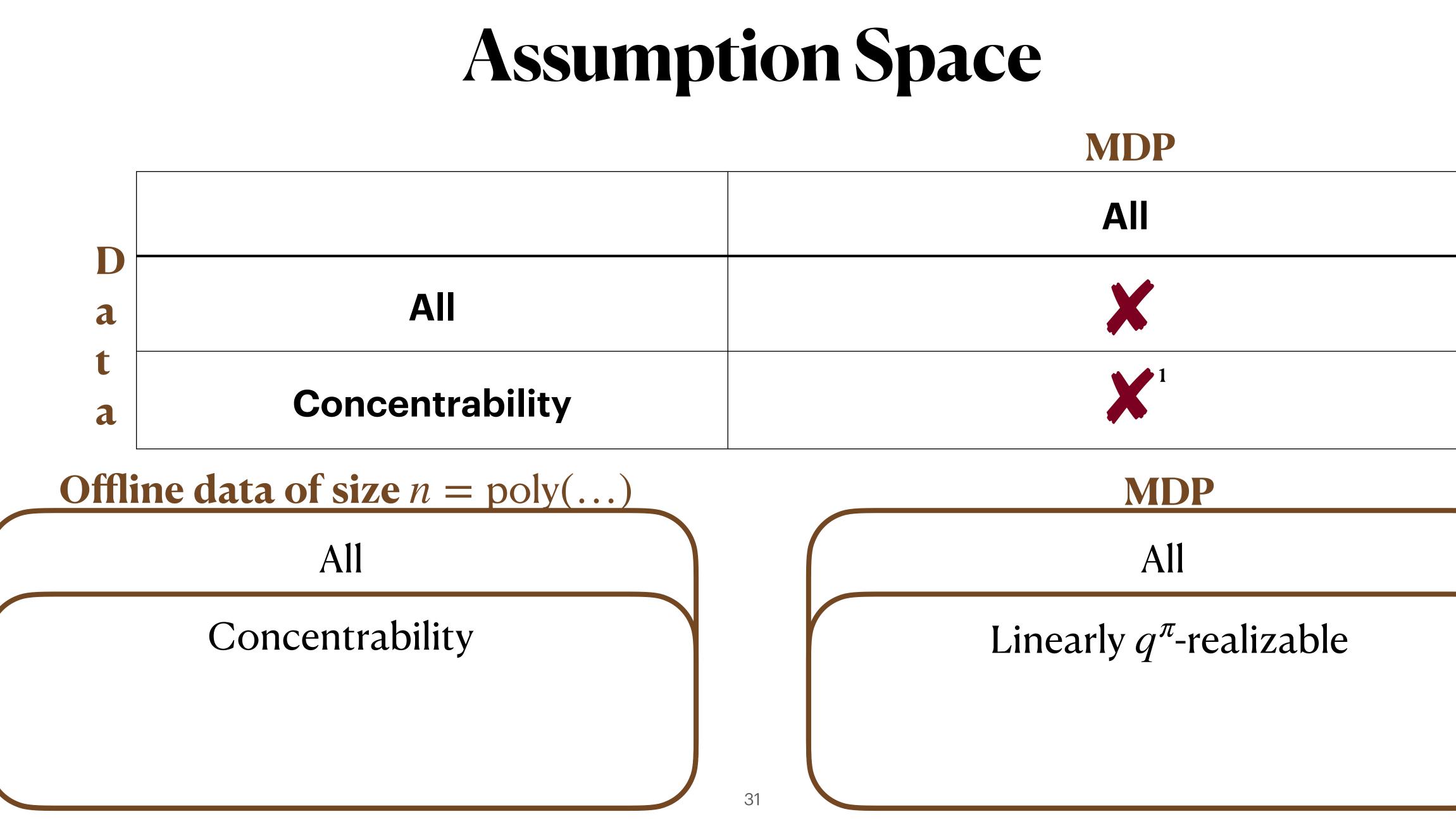




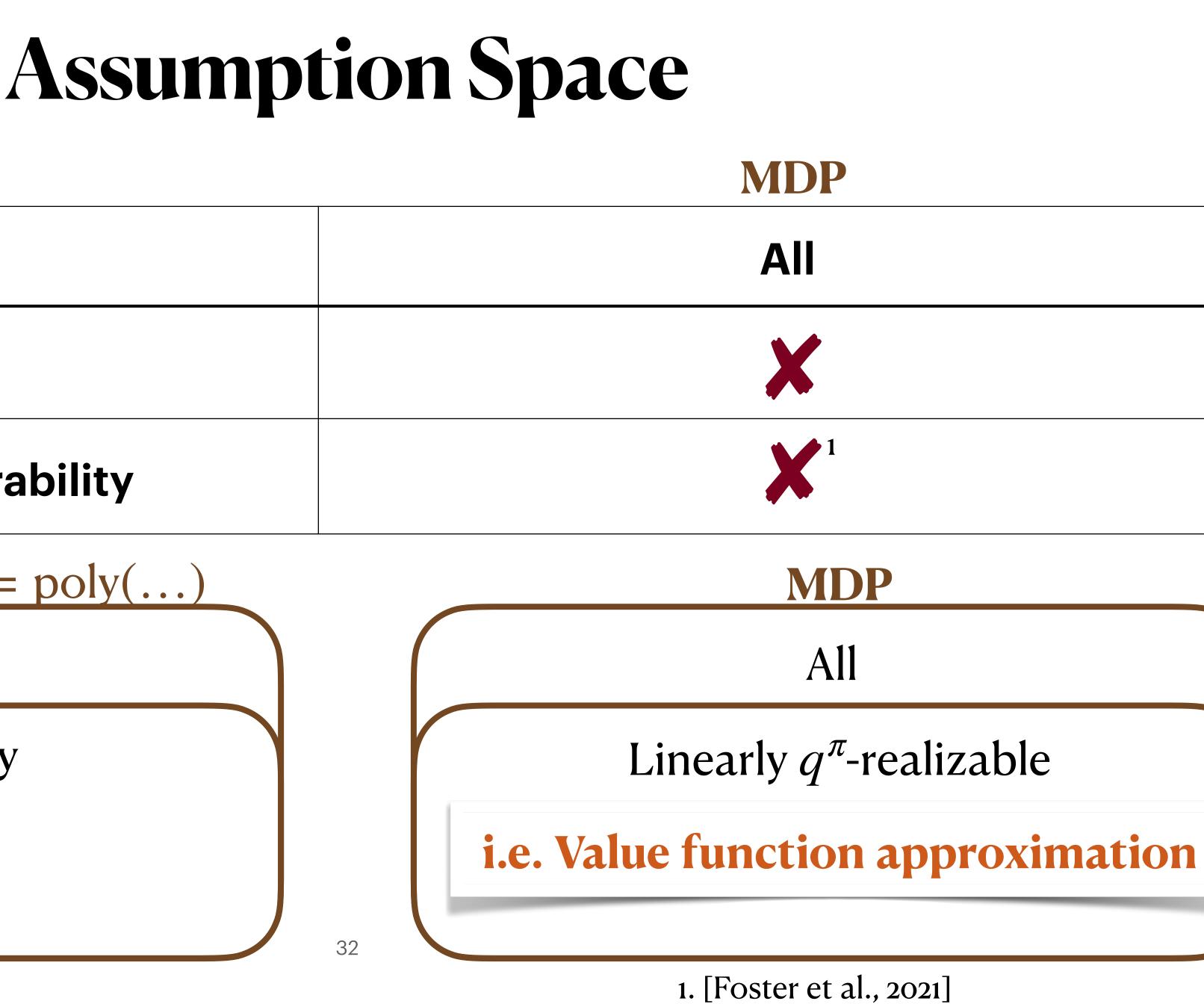


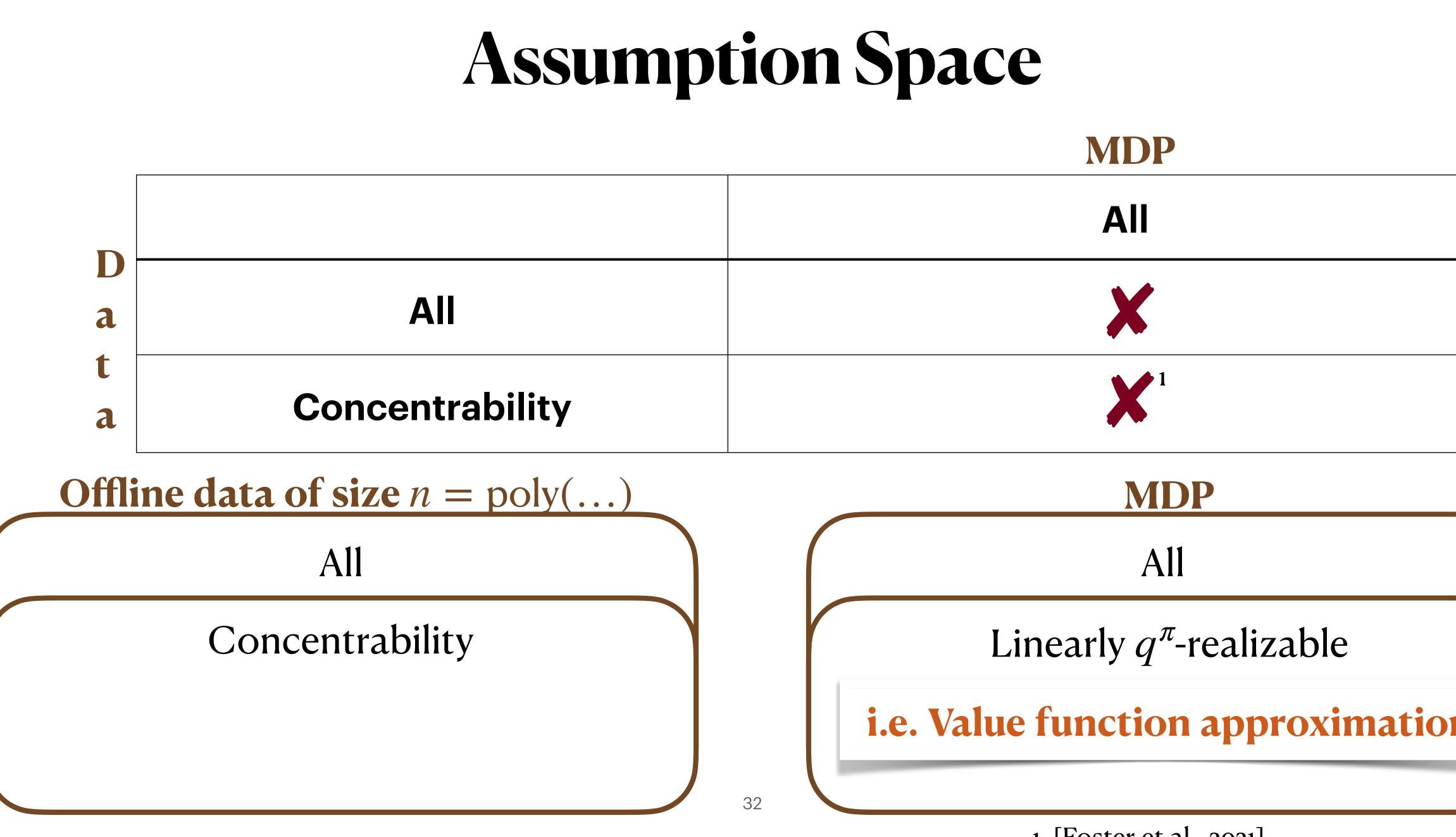


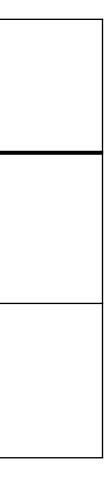


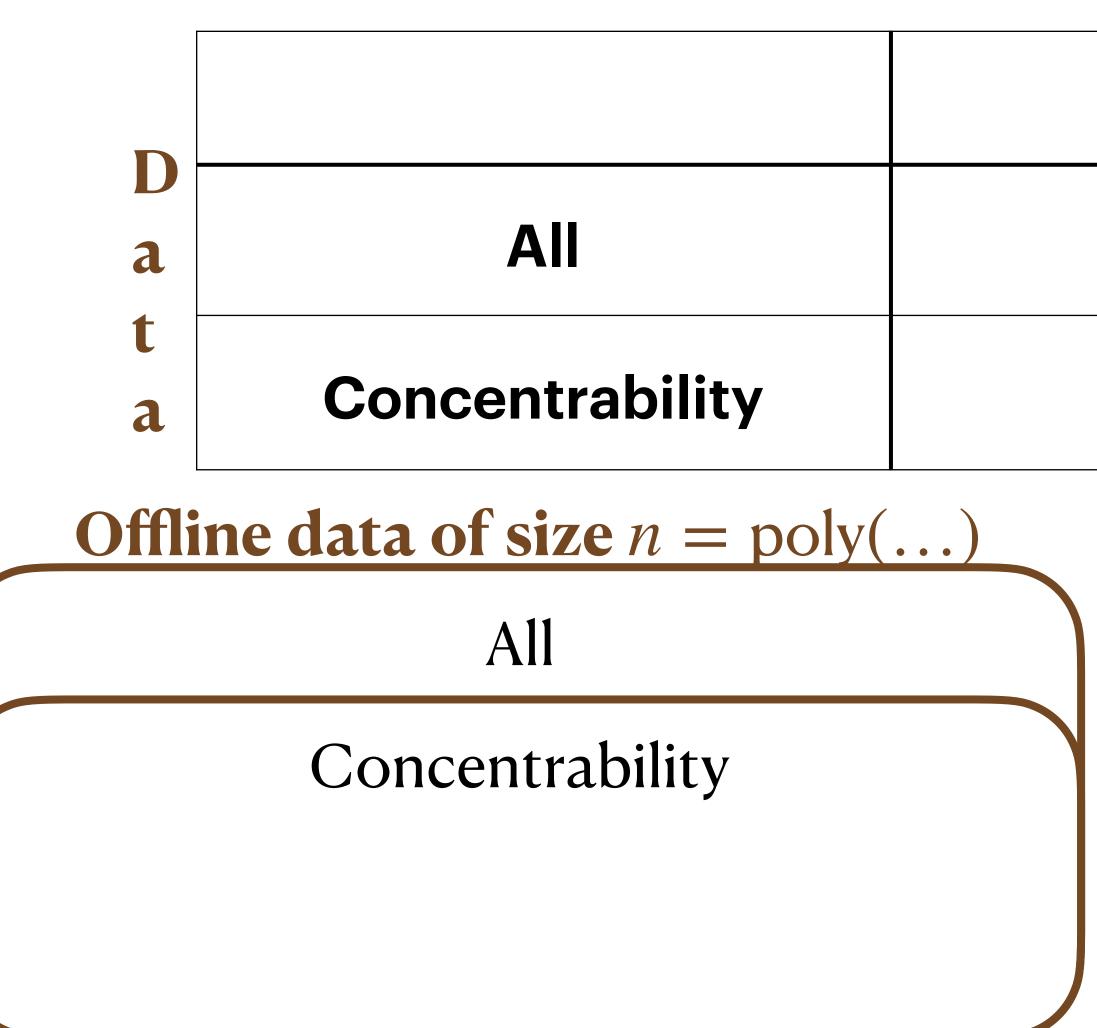












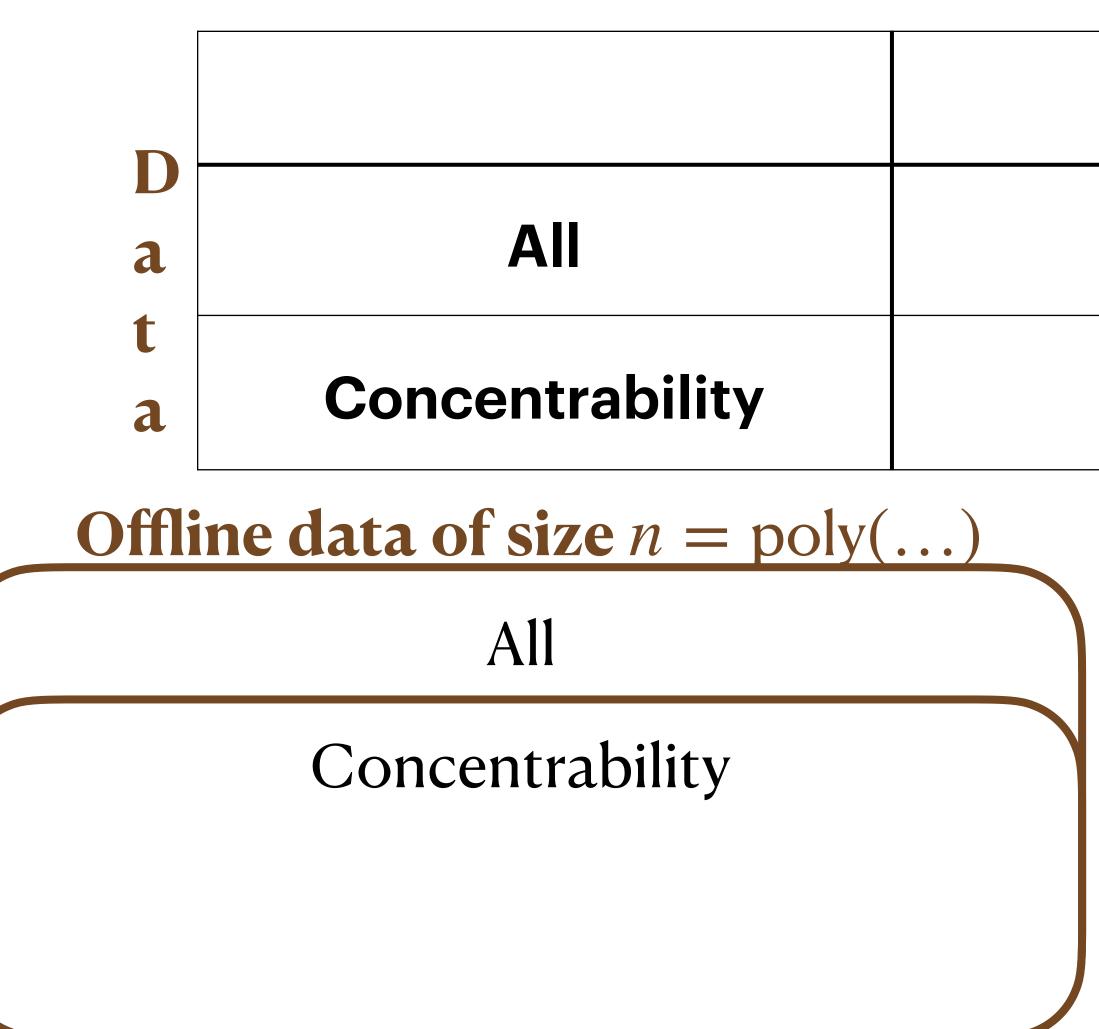
Assumption Space

MDP

AII	Linearly q^{π} -realizable	
	MDP	

All

Linearly q^{π} -realizable



Assumption Space

MDP

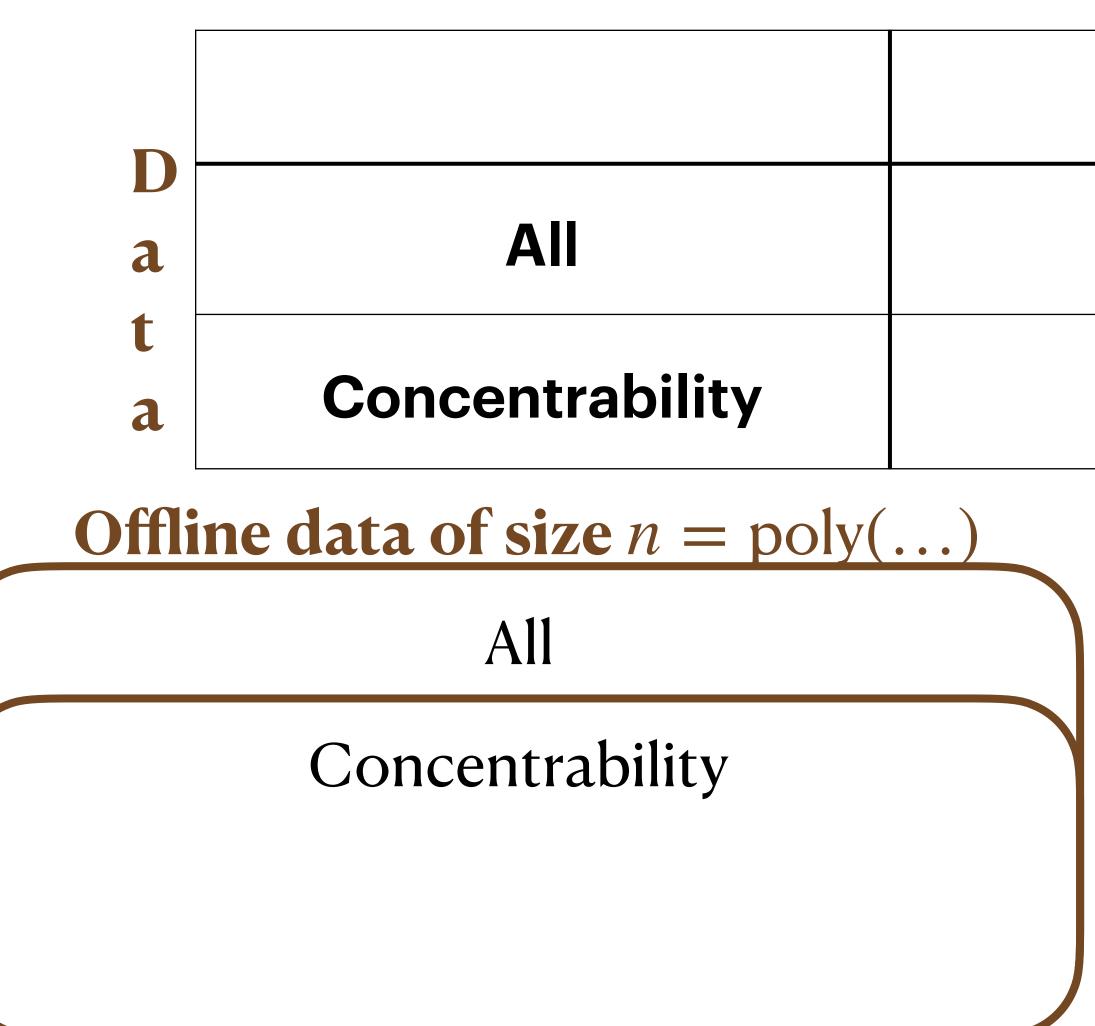
AII	Linearly q^{π} -realizable

MDP

All

Linearly q^{π} -realizable

Linear MDP



Assumption Space

MDP

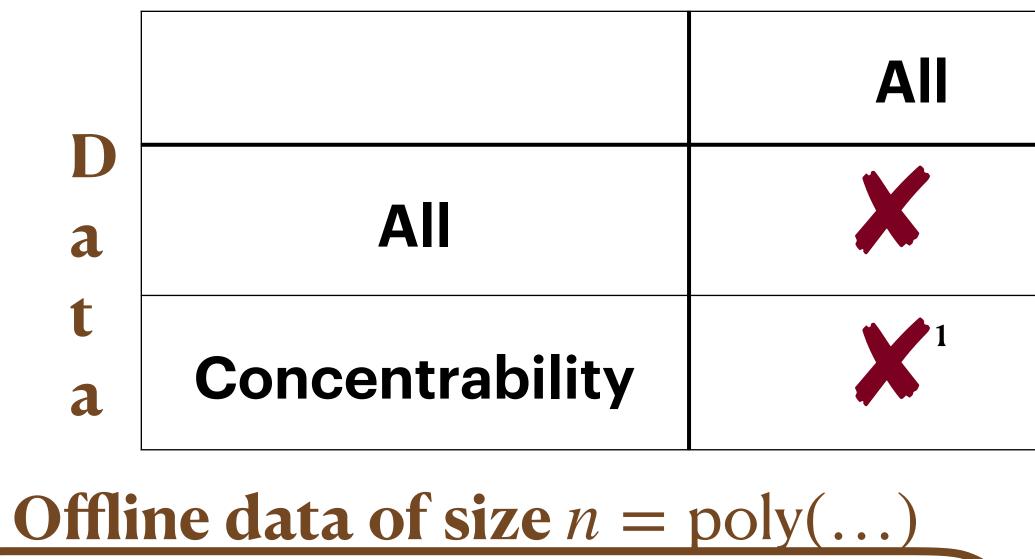
AII	Linearly q^{π} -realizable

MDP

A 11

i.e. Transition & Reward function approximation

Linear MDP



All

Concentrability

Assumption Space

MDP

Linearly q^{π} -realizable	Linear MD
	2

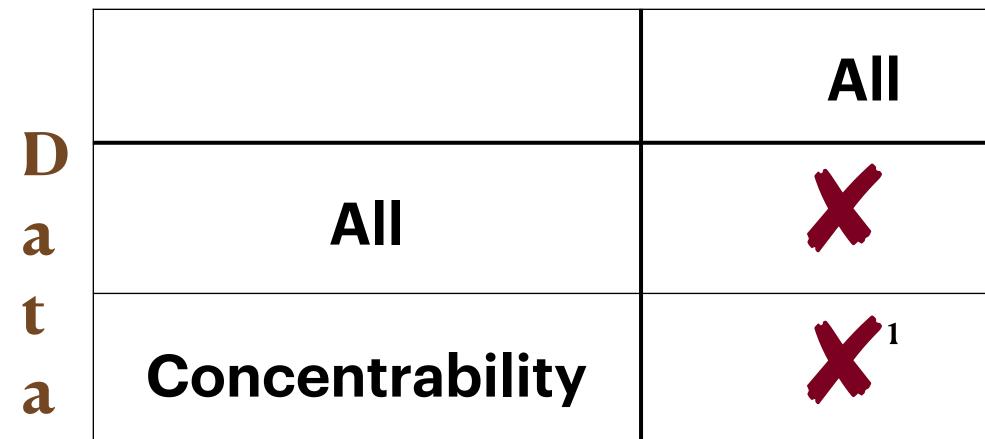
MDP

All

Linearly q^{π} -realizable

Linear MDP

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]



Offline data of size n = poly(...)

All

Concentrability

Something stronger than concentrability

Assumption Space

MDP

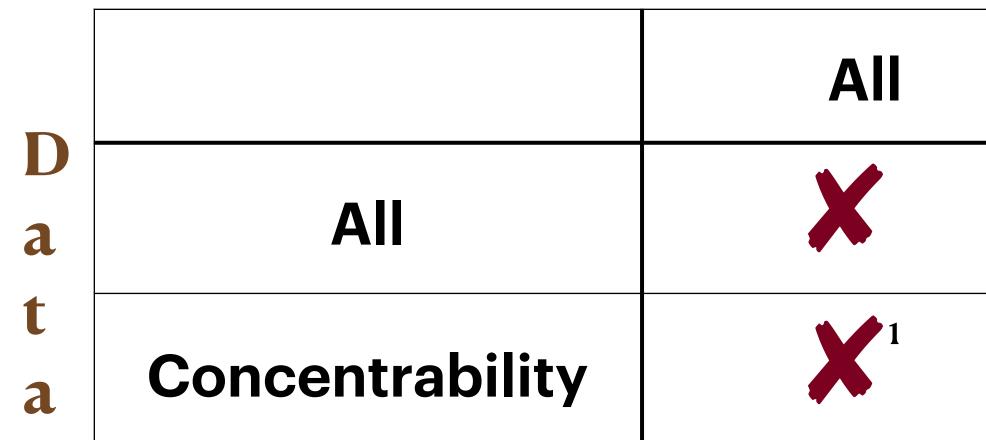
Linearly q^{π} -realizable	Linear MD
	2

MDP

All

Linearly q^{π} -realizable

Linear MDP



Offline data of size n = poly(...)

All

Concentrability

Concentrability & Trajectory data

Assumption Space

MDP

Linearly q^{π} -realizable	Linear MD
	2

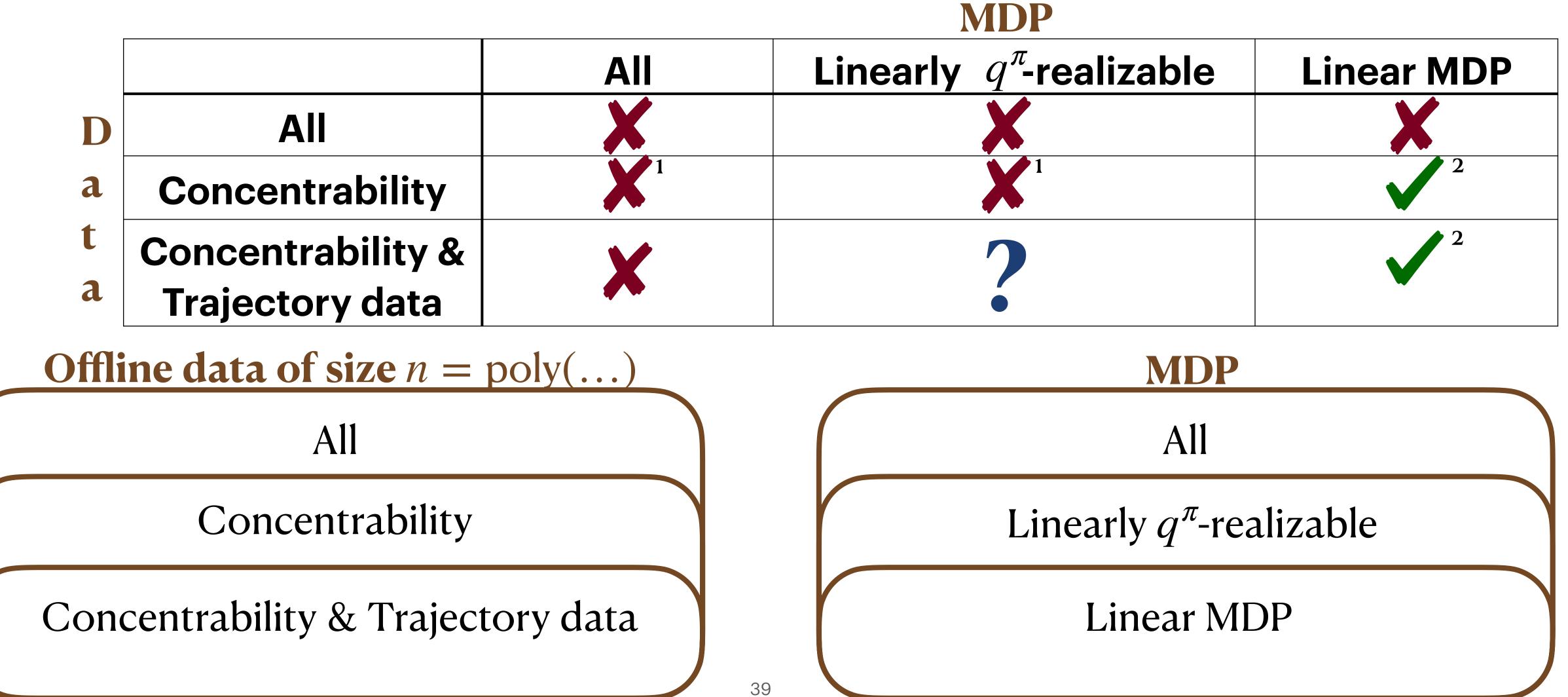
MDP

All

Linearly q^{π} -realizable

Linear MDP

Assumption Space

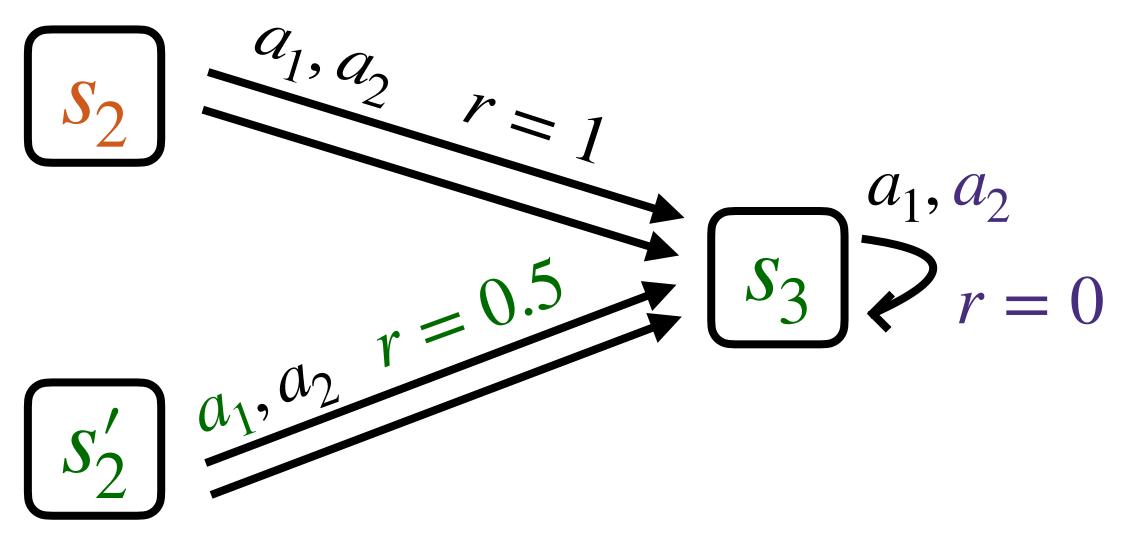


Example: Offline Data

a2, r=0.5

Notice $s_2 \neq s_2'$

i.e. Not trajectory data

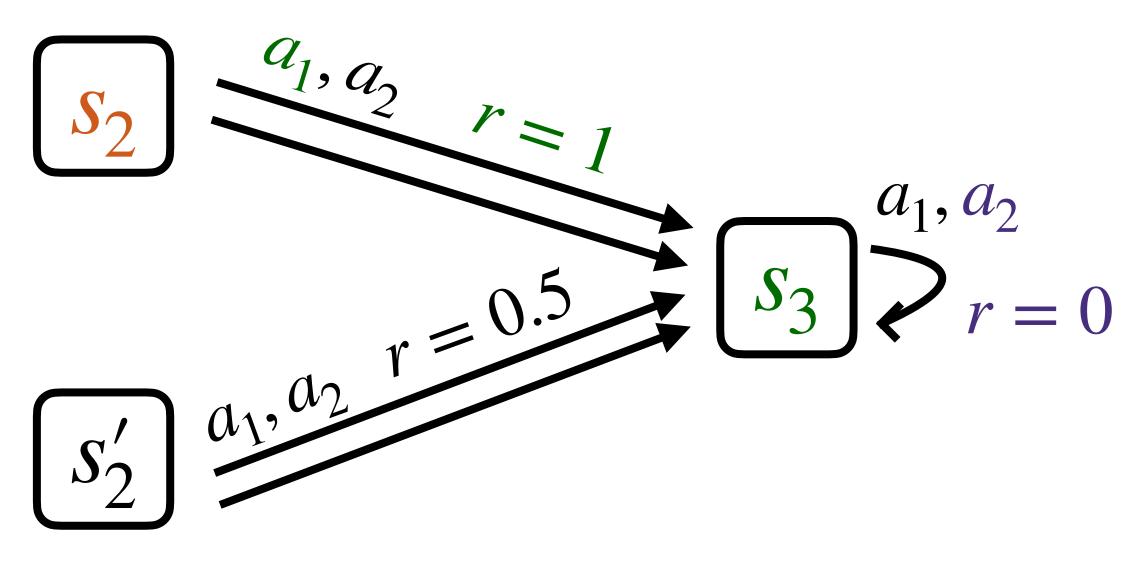


Offline data $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0, 5, s_3), (s_3, a_2, 0, s_3))$ $h = 1 \qquad h = 2 \qquad h = 3$ 40

Example: Offline Trajectory Data

$\frac{a_2}{r} = 0.5$ Notice S₂

i.e. trajectory data



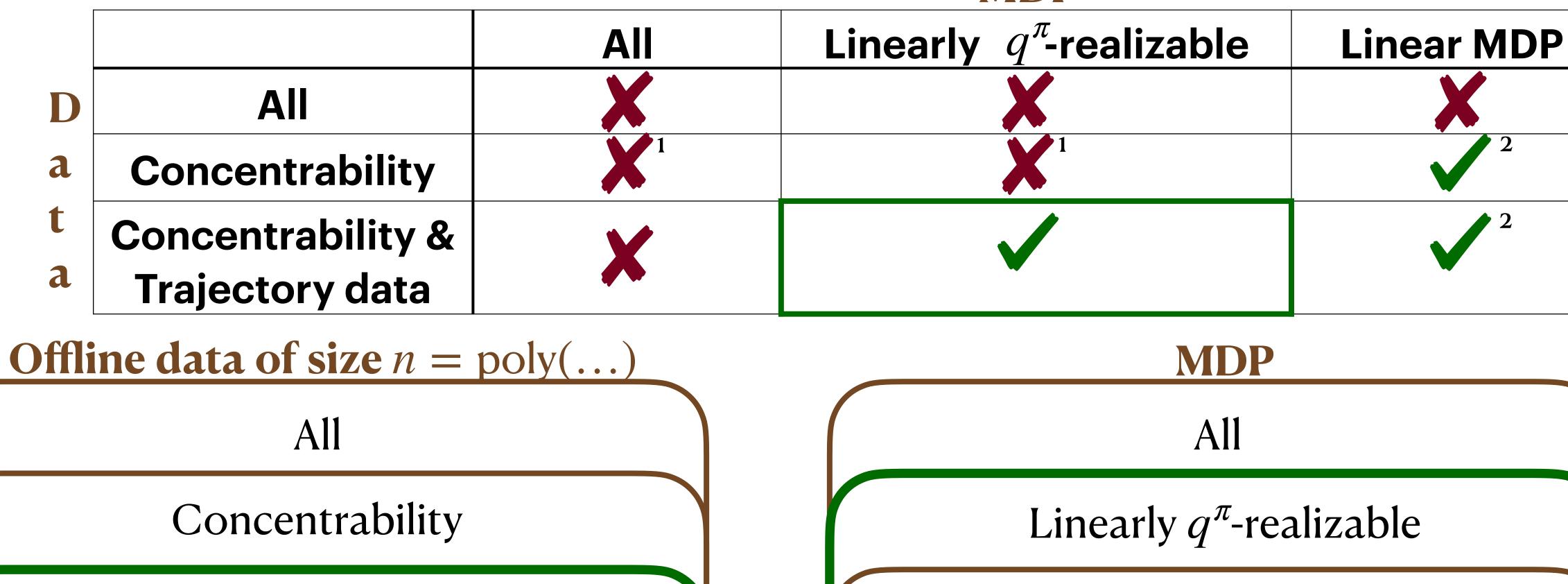
 $a_1 \sim \pi_g(s_1)$ $a_1 \sim \pi_g(s_2)$ $a_2 \sim \pi_g(s_3)$ **Offline data** $(n = 1): ((s_1, a_1, 0, s_2), (s_2, a_1, 1, s_3), (s_3, a_2, 0, s_3))$ $h = 1 \qquad h = 2 \qquad h = 3$ 41

Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

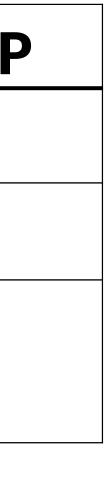
(Our result) What we know now!

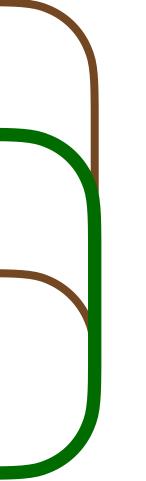


Concentrability & Trajectory data

MDP

Linear MDP





(Our result) What we know now! Theorem

Theorem [This work]: For any $\epsilon > 0$, with linear q^{π} -realizability and access to offline trajectory data (satisfying concentrability) of size $n = \text{poly}(1/\epsilon, H, d, C)$, our algorithm outputs a policy π such that:

 $v^{\pi^*}(s_1) - v^{\pi}(s_1) \le \epsilon$

Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

(Our method) How we know it...

Our Algorithm (roughly):

Modify the linearly q^{π} -realizable MDP to be a linear MDP Run an algorithm that works in linear MDPs

Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

(Future work) What's next?

Our algorithm isn't computationally efficient (not poly $(1/\epsilon, H, d, C)$)

Open problem: Can the problem be solved computationally efficiently?

(Future work) What's next?

Our algorithm isn't computationally efficient (not poly $(1/\epsilon, H, d, C)$)

Open problem: Can the problem be solved computationally efficiently?

We require
$$n = \tilde{\Omega} \left(C^4 H^7 d^4 / \epsilon^2 \right)$$

Open problem: What is the best possible *n*?

References

J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In *International Conference on Machine Learning*, pages 1042–1051. PMLR, 2019.

D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu. Offline reinforcement learning: Fundamental barriers for value function approximation. *arXiv preprint arXiv*:2111.10919, 2021.

G. Weisz, A. György, and C. Szepesvári. Online rl in linearly qpi-realizable mdps is as easy as in 368 linear mdps if you learn what to ignore. *arXiv preprint arXiv*:2310.07811, 2023.