# **Trajectory Data Suffices for Statistically Efficient** Learning in Offline RL with Linear $q^{\pi}$ – Realizability and Concentrability

Vlad Tkachuk<sup>1</sup>, Gellért Weisz<sup>2</sup>, Csaba Szepesvári<sup>1,2</sup>

1. University of Alberta, 2. Google Deepmind



# **Offline RL** Needs Less Data if you Have **Trajectories**

Vlad Tkachuk<sup>1</sup>, Gellért Weisz<sup>2</sup>, Csaba Szepesvári<sup>1,2</sup>

1. University of Alberta, 2. Google Deepmind

# Motivation (learning with offline data)



#### Safety concerns (ex: healthcare)

# Motivation (learning with offline data)



#### Safety concerns (ex: healthcare)



There is a lot of offline data available (ex: the entire internet)

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

### Overview

#### Finite-Horizon Markov Decision Process (**MDP**): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$

#### Finite-Horizon Markov Decision Process (**MDP**): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where $\mathcal{S}_h$ is the set of states at stage h $h \in [H]$

$$[H] = \{1, \dots, H\}$$

### Finite-Horizon Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $\mathcal{S} = \bigcup \mathcal{S}_h$ (State space): where $\mathcal{S}_h$ is the set of states at stage h $h \in [H]$

A (Action space): A finite set of actions

$$[H] = \{1, \dots, H\}$$

Finite-Horizon Markov Decision Process (MDP):  $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$  $\mathcal{S} = \bigcup \mathcal{S}_h$  (State space): where  $\mathcal{S}_h$  is the set of states at stage h  $h \in [H]$ A (Action space): A finite set of actions  $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$  (Transition function)

 $[H] = \{1, \dots, H\}$  $\mathcal{M}_1(X)$  = Set of probability distributions over the set X



Finite-Horizon Markov Decision Process (MDP):  $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$  $\mathcal{S} = \bigcup \mathcal{S}_h$  (State space): where  $\mathcal{S}_h$  is the set of states at stage h  $h \in [H]$ A (Action space): A finite set of actions  $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$  (Transition function)  $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$  (**Reward function**) [Deterministic for convenience]

$$[H] = \{1, ..., H\}$$
  
 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$ 



Finite-Horizon Markov Decision Process (MDP):  $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$  $\mathcal{S} = \bigcup \mathcal{S}_h$  (State space): where  $\mathcal{S}_h$  is the set of states at stage h  $h \in [H]$ A (Action space): A finite set of actions  $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$  (Transition function)  $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$  (**Reward function**) [Deterministic for convenience]  $H \geq 1$  (Horizon)

$$[H] = \{1, ..., H\}$$
  
 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$ 



Finite-Horizon Markov Decision Process (MDP):  $(\mathcal{S}, \mathcal{A}, P, \mathcal{R}, H, s_1)$  $\mathcal{S} = \begin{bmatrix} \int \mathcal{S}_h \text{ (State space): where } \mathcal{S}_h \text{ is the set of states at stage } h \end{bmatrix}$  $h \in [H]$ A (Action space): A finite set of actions  $P: \mathcal{S}_h \times \mathcal{A} \to \mathcal{M}_1(\mathcal{S}_{h+1})$  (Transition function)  $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$  (**Reward function**) [Deterministic for convenience]  $H \geq 1$  (Horizon)  $s_1 \in \mathcal{S}_1$  (Start state)

$$[H] = \{1, ..., H\}$$
  
 $\mathcal{M}_1(X) = \text{Set of probability distributions over the}$ 





# Example: MDP

# Agent's Behaviour: Policy

#### $\pi: \mathcal{S} \to \mathcal{M}_1(\mathcal{A})$ (Policy): A map from states to distributions over actions

 $\mathcal{M}_1(X)$  = Set of probability distributions over the set *X* 



### Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$ : $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

# Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$ : $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$  (Optimal policy)

# Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$ : $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$  (Optimal policy)

**Problem:** For any  $\epsilon > 0$ , with access to offline data of size  $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$ , find a policy  $\pi$  such that:  $v^{\pi^*}(S_1)$ 

$$) - v^{\pi}(s_1) \leq \epsilon$$



# Definitions $((s_h, a_h) \in \mathcal{S}_h \times \mathcal{A} \text{ and } h \in [H])$ : $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[ \sum_{t=h}^{H} r(S_t, A_t) | S_h = s_h \right]$ (State-value function)

 $\pi^* = \arg \max_{\pi} v^{\pi}(s_1)$  (Optimal policy)

**Problem:** For any  $\epsilon > 0$ , with access to offline data of size  $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$ , find a policy  $\pi$  such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a good policy with a small amount of offline data)



# **Example: Offline Data**



Offline data  $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0.5, s_3), (s_3, a_2, 0, s_3))$ h = 119 h = 2h = 3

# **Example: Offline Data**

# a2, r=0.5

#### Notice $s_2 \neq s_2'$

i.e. Not trajectory data



Offline data  $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0, 5, s_3), (s_3, a_2, 0, s_3))$  $h = 1 \qquad h = 2 \qquad h = 3$ 20

# The State Space is Very Very Large!

The number of states  $|\mathcal{S}|$  can be very large!

*Examples:* Chess, Robotics, Go, Self-driving, etc.

# **Problem:** For any $\epsilon > 0$ , with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$ , find a policy $\pi$ such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \le \epsilon$
- (i.e. Find a good policy with a small amount of offline data)



# **Problem:** For any $\epsilon > 0$ , with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$ , find a policy $\pi$ such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a good policy with a small amount of offline data)



# **Problem:** For any $\epsilon > 0$ , with access to offline data of size $n = \text{poly}(1/\epsilon, H, d, |\mathcal{A}|)$ , find a policy $\pi$ such that:

- $v^{\pi^*}(s_1) v^{\pi}(s_1) \le \epsilon$
- (i.e. Find a good policy with a small amount of offline data)



### Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem?
What did we know?
What we know now!
How we know it...
What's next?



#### **Offline data of size** n = poly(...)

All

# Assumption Space

#### MDP All























































# Assumption Space

#### MDP

| AII | Linearly $q^{\pi}$ -realizable |  |
|-----|--------------------------------|--|
|     |                                |  |
|     |                                |  |
|     | MDP                            |  |

### All

#### Linearly $q^{\pi}$ -realizable









# Assumption Space

#### MDP

| AII | Linearly $q^{\pi}$ -realizable |
|-----|--------------------------------|
|     |                                |
|     |                                |

### MDP

#### All

#### Linearly $q^{\pi}$ -realizable

#### Linear MDP









# Assumption Space

#### **MDP**

| AII | Linearly $q^{\pi}$ -realizable |
|-----|--------------------------------|
|     |                                |
|     |                                |

#### MDP

A 11

i.e. Transition & Reward function approximation

#### Linear MDP









#### All

#### Concentrability

# Assumption Space

#### MDP

| Linearly $q^{\pi}$ -realizable | Linear MD |
|--------------------------------|-----------|
|                                |           |
|                                | 2         |

#### MDP

#### All

#### Linearly $q^{\pi}$ -realizable

#### Linear MDP

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]











## **Offline data of size** n = poly(...)

#### All

### Concentrability

Something stronger than concentrability

## Assumption Space

#### MDP

| Linearly $q^{\pi}$ -realizable | Linear MD |
|--------------------------------|-----------|
|                                |           |
|                                | 2         |

## MDP

## All

## Linearly $q^{\pi}$ -realizable

## Linear MDP











## **Offline data of size** n = poly(...)

#### All

### Concentrability

Concentrability & Trajectory data

## Assumption Space

#### MDP

| Linearly $q^{\pi}$ -realizable | Linear MD |
|--------------------------------|-----------|
|                                |           |
|                                | 2         |

## MDP

## All

## Linearly $q^{\pi}$ -realizable

## Linear MDP







## Assumption Space





## **Example: Offline Data**

# a2, r=0.5

## Notice $s_2 \neq s_2'$

i.e. Not trajectory data



Offline data  $(n = 1): ((s_1, a_1, 0, s_2), (s'_2, a_1, 0, 5, s_3), (s_3, a_2, 0, s_3))$  $h = 1 \qquad h = 2 \qquad h = 3$ 40

## **Example: Offline Trajectory Data**

# $\frac{a_2}{r} = 0.5$ Notice S<sub>2</sub>

#### i.e. trajectory data



 $a_1 \sim \pi_g(s_1)$   $a_1 \sim \pi_g(s_2)$   $a_2 \sim \pi_g(s_3)$ **Offline data**  $(n = 1): ((s_1, a_1, 0, s_2), (s_2, a_1, 1, s_3), (s_3, a_2, 0, s_3))$  $h = 1 \qquad h = 2 \qquad h = 3$ 41

## Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

## (Our result) What we know now!



Concentrability & Trajectory data

### **MDP**

### Linear MDP







## (Our result) What we know now! Theorem

**Theorem [This work]:** For any  $\epsilon > 0$ , with linear  $q^{\pi}$ -realizability and access to offline trajectory data (satisfying concentrability) of size  $n = \text{poly}(1/\epsilon, H, d, C)$ , our algorithm outputs a policy  $\pi$  such that:

 $v^{\pi^*}(s_1) - v^{\pi}(s_1) \le \epsilon$ 

## Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

## (Our method) How we know it...

## **Our Algorithm (roughly):**

Modify the linearly  $q^{\pi}$ -realizable MDP to be a linear MDP Run an algorithm that works in linear MDPs

## Overview

- (Setting)
- (Related works)
- (Our result)
- (Our method)
- (Future work)

What is the problem? What did we know? What we know now! How we know it... What's next?

## (Future work) What's next?

### Our algorithm isn't computationally efficient (not poly $(1/\epsilon, H, d, C)$ )

**Open problem:** Can the problem be solved computationally efficiently?

## (Future work) What's next?

### Our algorithm isn't computationally efficient (not poly $(1/\epsilon, H, d, C)$ )

**Open problem:** Can the problem be solved computationally efficiently?

We require 
$$n = \tilde{\Omega} \left( C^4 H^7 d^4 / \epsilon^2 \right)$$

**Open problem:** What is the best possible *n*?





## References

J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In *International Conference on Machine Learning*, pages 1042–1051. PMLR, 2019.

D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu. Offline reinforcement learning: Fundamental barriers for value function approximation. *arXiv preprint arXiv*:2111.10919, 2021.

G. Weisz, A. György, and C. Szepesvári. Online rl in linearly qpi-realizable mdps is as easy as in 368 linear mdps if you learn what to ignore. *arXiv preprint arXiv*:2310.07811, 2023.