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Safety concerns (ex: healthcare)
There is a lot of offline data available 

(ex: the entire internet)



Overview

• (Setting)                   What is the problem?    

• (Related works)      What did we know?        

• (Our result)              What we know now!     

• (Our method)          How we know it…           

• (Future work)          What’s next?                 
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Environment: MDP

Finite-Horizon Markov Decision Process (MDP):  (𝒮, 𝒜, P, ℛ, H, s1)
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Environment: MDP

Finite-Horizon Markov Decision Process (MDP):  

 (State space): where  is the set of states at stage  

 (Action space): A finite set of actions 

 (Transition function) 

 (Reward function) [Deterministic for convenience] 

 (Horizon) 

 (Start state)

(𝒮, 𝒜, P, ℛ, H, s1)

𝒮 = ⋃
h∈[H]

𝒮h 𝒮h h

𝒜

P : 𝒮h × 𝒜 → ℳ1(𝒮h+1)

r : 𝒮 × 𝒜 → [0,1]

H ≥ 1

s1 ∈ 𝒮1

12   = Set of probability distributions over the set ℳ1(X) X
[H] = {1,…, H}



Example: MDP
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s1

s2

s′ 2

s3
a1

a2

a1, a2

a1, a2
r = 0.5

r = 0

r = 0.5

r = 1
a1, a2

r = 0



Agent’s Behaviour: Policy

 (Policy): A map from states to distributions over actionsπ : 𝒮 → ℳ1(𝒜)

14   = Set of probability distributions over the set ℳ1(X) X



The Problem
Definitions : 

(State-value function) 

((sh, ah) ∈ 𝒮h × 𝒜 and h ∈ [H])
vπ(sh) = 𝔼π [∑

H

t=h
r(St, At) |Sh = sh]
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Problem: For any , with access to offline data of size 
, find a policy  such that: 

 

(i.e. Find a good policy with a small amount of offline data)
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Example: Offline Data
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Offline data ( ): , , n = 1 ((s1, a1,0,s2) (s′ 2, a1,0.5,s3) (s3, a2,0,s3))
h = 1 h = 2 h = 3

s1

s2

s′ 2

s3
a1

a2

a1, a2

a1, a2
r = 0.5

r = 0

r = 0.5

r = 1
a1, a2

r = 0



Example: Offline Data
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Notice   s2 ≠ s′ 2

i.e. Not trajectory data

Offline data ( ): , , n = 1 ((s1, a1,0,s2) (s′ 2, a1,0.5,s3) (s3, a2,0,s3))
h = 1 h = 2 h = 3

s1

s2

s′ 2

s3
a1

a2

a1, a2

a1, a2
r = 0.5

r = 0

r = 0.5

r = 1
a1, a2

r = 0



The State Space is Very Very Large!

The number of states  can be very large! 

Examples: Chess, Robotics, Go, Self-driving, etc. 

|𝒮 |

21



The Problem
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Assumption Space
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i.e. Good coverage of the state and 
action spaces
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i.e. Transition & Reward function 
approximation
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Example: Offline Data
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Notice   s2 ≠ s′ 2

i.e. Not trajectory data

Offline data ( ): , , n = 1 ((s1, a1,0,s2) (s′ 2, a1,0.5,s3) (s3, a2,0,s3))
h = 1 h = 2 h = 3

s1

s2

s′ 2

s3
a1

a2

a1, a2

a1, a2
r = 0.5

r = 0

r = 0.5

r = 1
a1, a2

r = 0



Example: Offline Trajectory Data
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s1

s2

s′ 2

s3
a1

a2

a1, a2

a1, a2
r = 0.5

r = 0

r = 0.5

r = 1
a1, a2

r = 0

Notice   s2 = s2

i.e. trajectory data

Offline data ( ): , , n = 1 ((s1, a1,0,s2) (s2, a1,1,s3) (s3, a2,0,s3))
h = 1 h = 2 h = 3

a1 ∼ πg(s1) a1 ∼ πg(s2) a2 ∼ πg(s3)
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(Our result) What we know now! 
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(Our result) What we know now! 
Theorem
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Theorem [This work]: For any , with linear -realizability and 
access to offline trajectory data (satisfying concentrability) of size 

, our algorithm outputs a policy  such that: 

ϵ > 0 qπ

n = poly(1/ϵ, H, d, C) π

vπ*(s1) − vπ(s1) ≤ ϵ
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(Our method) How we know it…          
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Our Algorithm (roughly): 

Modify the linearly -realizable MDP to be a linear MDP 

Run an algorithm that works in linear MDPs

qπ
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(Future work) What’s next? 
 
Our algorithm isn’t computationally efficient (not ) 

 

poly(1/ϵ, H, d, C)
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Open problem: Can the problem be solved computationally efficiently?



(Future work) What’s next? 
 
Our algorithm isn’t computationally efficient (not ) 

 
We require  

poly(1/ϵ, H, d, C)

n = Ω̃ (C4H7d4/ϵ2)
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Open problem: Can the problem be solved computationally efficiently?

Open problem: What is the best possible ?n



Thank You :)
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