1. University of Alberta, 2. Google Deepmind

Trajectory Data Suffices for Statistically Efficient Learning in Offline RL with Linear q^{π} – Realizability **and Concentrability** *qπ* −

Vlad Tkachuk¹, Gellért Weisz², Csaba Szepesvári^{1,2}

1. University of Alberta, 2. Google Deepmind

Offline RL Needs **Less Data** if you Have **Trajectories**

Vlad Tkachuk¹, Gellért Weisz², Csaba Szepesvári^{1,2}

Safety concerns (ex: healthcare)

Motivation (learning with offline data)

Motivation (learning with offline data)

Safety concerns (ex: healthcare)

There is a lot of offline data available (ex: the entire internet)

-
-
-
-
- (Future work) What's next?

• (Setting) What is the problem? • (Related works) What did we know? • (Our result) What we know now! • (Our method) How we know it...

Overview

Finite-Horizon Markov Decision Process (MDP): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h *h*∈[*H*]

$$
[H] = \{1,\ldots,H\}
$$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h $h \in [H]$

(Action space): A finite set of actions

$$
[H] = \{1,\ldots,H\}
$$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h **(Action space)**: A finite set of actions $P: {\mathcal{S}}_h \times \mathscr{A} \to {\mathscr{M}}_1({\mathcal{S}}_{h+1})$ (Transition function) *h*∈[*H*]

9 $\mathcal{M}_1(X)$ = Set of probability distributions over the set X $[H] = \{1, ..., H\}$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h **(Action space)**: A finite set of actions $P: {\mathcal{S}}_h \times \mathscr{A} \to {\mathscr{M}}_1({\mathcal{S}}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (Reward function) [Deterministic for convenience] *h*∈[*H*]

$$
[H] = \{1, ..., H\}
$$

$$
\mathcal{M}_1(X) = \text{Set of probability distributions over the set } X
$$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h **(Action space)**: A finite set of actions $P: {\mathcal{S}}_h \times \mathscr{A} \to {\mathscr{M}}_1({\mathcal{S}}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (Reward function) [Deterministic for convenience] $H \geq 1$ (Horizon) *h*∈[*H*]

$$
[H] = \{1, ..., H\}
$$

$$
\mathcal{M}_1(X) = \text{Set of probability distributions over the set } X
$$

Finite-Horizon Markov Decision Process (**MDP**): $(S, \mathcal{A}, P, \mathcal{R}, H, s_1)$ $=$ $\bigcup S_h$ (State space): where ${\mathcal S}_h$ is the set of states at stage h **(Action space)**: A finite set of actions $P: {\mathcal{S}}_h \times \mathscr{A} \to {\mathscr{M}}_1({\mathcal{S}}_{h+1})$ (Transition function) $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ (Reward function) [Deterministic for convenience] $H \geq 1$ (Horizon) $s_1 \in \mathcal{S}_1$ (Start state) *h*∈[*H*]

12 *M*₁(*X*) = Set of probability distributions over the set *X* $[H] = \{1, ..., H\}$

Example: MDP

Agent's Behaviour: Policy

π : $\mathcal{S} \to \mathcal{M}_1(\mathcal{A})$ (Policy): A map from states to distributions over actions

14 *M*₁(*X*) = Set of probability distributions over the set *X*

Definitions $((s_h, a_h) \in S_h \times \mathcal{A}$ and $h \in [H]$): $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) \right] S_h = s_h$ (State-value function) *^π* [∑ *H t*=*h* $r(S_t, A_t) | S_h = s_h$

-
-

Definitions $((s_h, a_h) \in S_h \times \mathcal{A}$ and $h \in [H]$): $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) \right] S_h = s_h$ (State-value function) *^π* [∑ *H t*=*h* $r(S_t, A_t) | S_h = s_h$

(Optimal policy) π^* = arg max_{π} $v^{\pi}(s_1)$

-
-

Definitions $((s_h, a_h) \in S_h \times \mathcal{A}$ and $h \in [H]$): $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) \right] S_h = s_h$ (State-value function) *^π* [∑ *H t*=*h* $r(S_t, A_t) | S_h = s_h$

(Optimal policy) π^* = arg max_{π} $v^{\pi}(s_1)$

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that:

-
- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$

Definitions $((s_h, a_h) \in S_h \times \mathcal{A}$ and $h \in [H]$): $v^{\pi}(s_h) = \mathbb{E}_{\pi} \left[\sum_{t=h}^{H} r(S_t, A_t) \right] S_h = s_h$ (State-value function) *^π* [∑ *H t*=*h* $r(S_t, A_t) | S_h = s_h$

(Optimal policy) π^* = arg max_{π} $v^{\pi}(s_1)$

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that: $\nu^{\pi^*}(s_1) - \nu^{\pi}$

(i.e. Find a **good policy** with a **small amount** of **offline data**)

$$
)-\nu^{\pi}(s_1)\leq \epsilon
$$

Example: Offline Data

19 **Offline data** $(n = 1)$: $((s_1, a_1, 0, s_2), (s'_2, a_1, 0.5, s_3), (s_3, a_2, 0, s_3))$ $h = 1$ $h = 2$ $h = 3$

Example: Offline Data

20 **Offline data** $(n = 1)$: $((s_1, a_1, 0, s_2), (s'_2, a_1, 0.5, s_3), (s_3, a_2, 0, s_3))$ $h = 1$ $h = 2$ $h = 3$

i.e. **Not** trajectory data

*s*1 *a*1 a_{2} $r = 0.5$ *r* $r = 0$

Notice $s_2 \neq s'_2$

The State Space is Very Very Large!

The number of states $|\mathcal{S}|$ can be very large!

Examples: **Chess, Robotics,** Go, Self-driving, etc.

-
-

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, |\mathcal{S}|, |\mathcal{A}|)$, find a policy π such that:

-
- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a **good policy** with a **small amount** of **offline data**)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, ||S||, ||\mathcal{A}||)$, find a policy π such that:

-
- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a **good policy** with a **small amount** of **offline data**)

Problem: For any $\epsilon > 0$, with access to offline data of size $n = \text{poly}(1/\epsilon, H, d, |\mathcal{A}|)$, find a policy π such that:

-
- $v^{\pi^*}(s_1) v^{\pi}(s_1) \leq \epsilon$
- (i.e. Find a **good policy** with a **small amount** of **offline data**)

Overview

-
-
-
-
- (Future work) What's next?

• (Setting) What is the problem? • (Related works) What did we know? • (Our result) What we know now! • (Our method) How we know it...

26

MDP

All All

Offline data of size *n* = poly(…)

1. [Foster et al., 2021]

1. [Foster et al., 2021]

MDP

MDP

1. [Foster et al., 2021]

MDP

Linear MDP

MDP

1. [Foster et al., 2021]

MDP

π **i.e. Transition & Reward function approximation**

Linear MDP

MDP

All All

Concentrability \parallel \parallel Linearly q^{π} -realizable

Linear MDP

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]

MDP

Offline data of size *n* = poly(…)

MDP

All All

Concentrability \parallel \parallel Linearly q^{π} -realizable

Linear MDP

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]

MDP

Offline data of size *n* = poly(…)

Something stronger than concentrability

MDP

All All

Concentrability \parallel \parallel Linearly q^{π} -realizable

Linear MDP

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]

MDP

Offline data of size *n* = poly(…)

Concentrability & Trajectory data

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]

Example: Offline Data

40 **Offline data** $(n = 1)$: $((s_1, a_1, 0, s_2), (s'_2, a_1, 0.5, s_3), (s_3, a_2, 0, s_3))$ $h = 1$ $h = 2$ $h = 3$

i.e. **Not** trajectory data

*s*1 *a*1 a_{2} $r = 0.5$ *r* $r = 0$

Notice $s_2 \neq s'_2$

Example: Offline Trajectory Data

41 **Offline data** $(n = 1)$: $((s_1, a_1, 0, s_2], (s_2, a_1, 1, s_3), (s_3, a_2, 0, s_3))$ $h = 1$ $h = 2$ $h = 3$ *a*₁ ∼ *π*_{*g*}(*s*₁) *a*₁ ∼ *π_{<i>g*}(*s*₂) *a*₂ ∼ *π_{<i>g*}(*s*₃)

*s*1 *a*1 a_{2} $r = 0.5$ *r* $r = 0$ **Notice** *s*₂

i.e. **trajectory data**

Overview

-
-
-
-
- (Future work) What's next?

• (Setting) What is the problem? • (Related works) What did we know? • (Our result) What we know now! • (Our method) How we know it...

(Our result) What we know now!

1. [Foster et al., 2021], 2.[Chen and Jiang, 2019]

MDP

(Our result) What we know now! Theorem

Theorem [This work]: For any $\epsilon > 0$, with linear q^{π} -realizability and access to offline trajectory data (satisfying *concentrability*) of size $n = \text{poly}(1/\epsilon, H, d, C)$, our algorithm outputs a policy π such that:

 $v^{\pi^*}(s_1) - v^{\pi}(s_1) \leq \epsilon$

Overview

-
-
-
-
- (Future work) What's next?

• (Setting) What is the problem? • (Related works) What did we know? • (Our result) What we know now! • (Our method) How we know it...

(Our method) How we know it…

Our Algorithm (roughly):

Modify the linearly q^{π} -realizable MDP to be a linear MDP Run an algorithm that works in linear MDPs

-
-
-
-
- (Future work) What's next?

• (Setting) What is the problem? • (Related works) What did we know? • (Our result) What we know now! • (Our method) How we know it...

Overview

(Future work) What's next?

Our algorithm isn't computationally efficient (not poly($1/\epsilon, H, d, C$))

Open problem: Can the problem be solved computationally efficiently?

(Future work) What's next?

Our algorithm isn't computationally efficient (not poly($1/\epsilon, H, d, C$))

Open problem: Can the problem be solved computationally efficiently?

We require
$$
n = \tilde{\Omega} (C^4 H^7 d^4 / \epsilon^2)
$$

Open problem: What is the best possible *n*?

References

J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In *International Conference on Machine Learning*, pages 1042–1051. PMLR, 2019.

D. J. Foster, A. Krishnamurthy, D. Simchi-Levi, and Y. Xu. Offline reinforcement learning: Fundamental barriers for value function approximation. *arXiv preprint arXiv*:2111.10919, 2021.

G. Weisz, A. György, and C. Szepesvári. Online rl in linearly qpi-realizable mdps is as easy as in 368 linear mdps if you learn what to ignore. *arXiv preprint arXiv*:2310.07811, 2023.