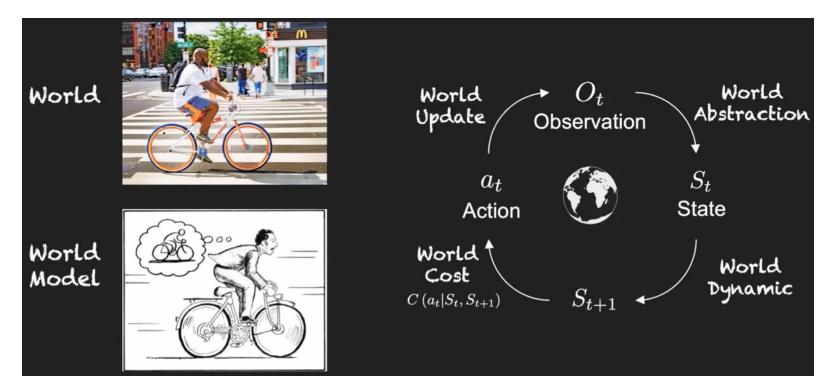

Building Generalizable World Models for Autonomous Driving

Shenyuan Gao

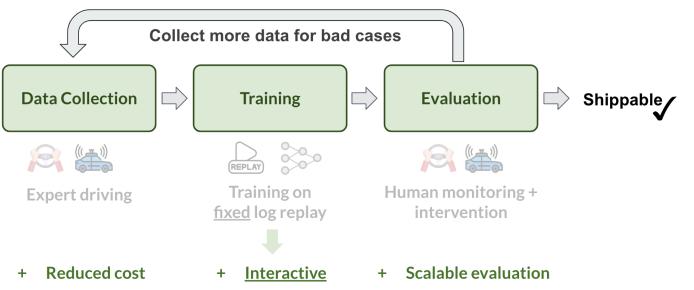
LeCun's AGI System

- Perception
 - Observe and estimate the world state
- Actor
 - Propose actions
- World model (core)
 - Predict plausible future state
- Cost
 - Evaluate the state



What is "World Model"

- A substitute that simulates the real world
- Given previous states and actions, predict the future


 $p(s_{t+1}|s_t, a_t)$

Introducing World Models to Autonomous Driving

• Expectation

Limitations of Existing Driving World Models

Generalization

Limited data scale and . geographic coverage

5 hours only Singapore & Boston 🛷

Representation Capacity

- Inferior fidelity
- Low resolution and frame rate

Action Control

- Single action modality •
- No zero-shot action controllability

Application

Underexplored

(2023/12)

(2023/09)

Not applicable for diverse real-world scenarios

Our Goal

Generalization

Limited data scale and geographic coverage

5 hours only Singapore & Boston 🛷

Representation Capacity

- Inferior fidelity
- Low resolution and frame rate

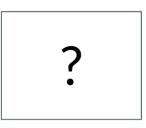
GenAD

(2024/03)

288×512

(2023/09)

controllability


Action Control

No zero-shot action

Single action modality •

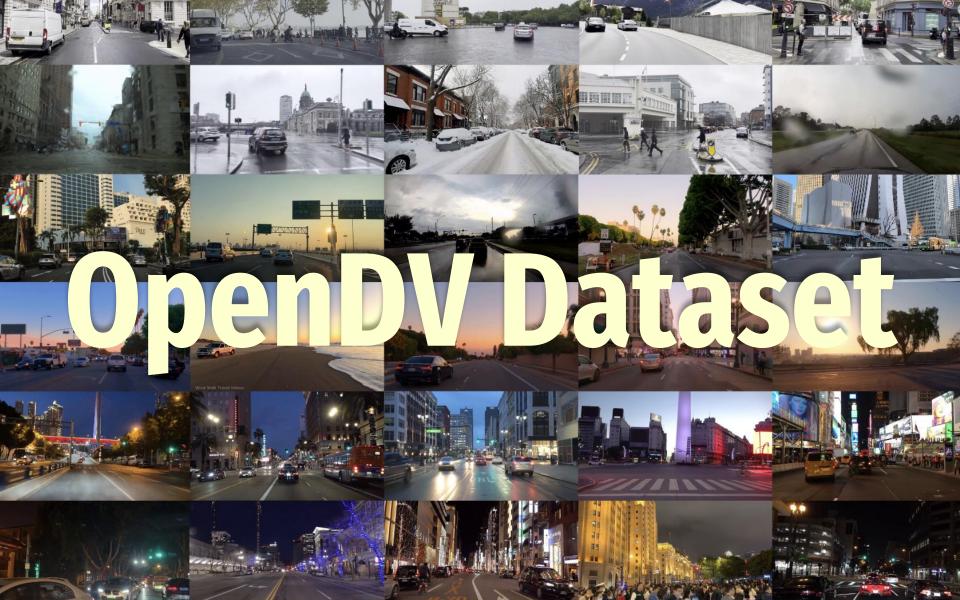
Application

Underexplored

High Fidelity High Resolution command goal point trajectory angle Versatile Action Controllability

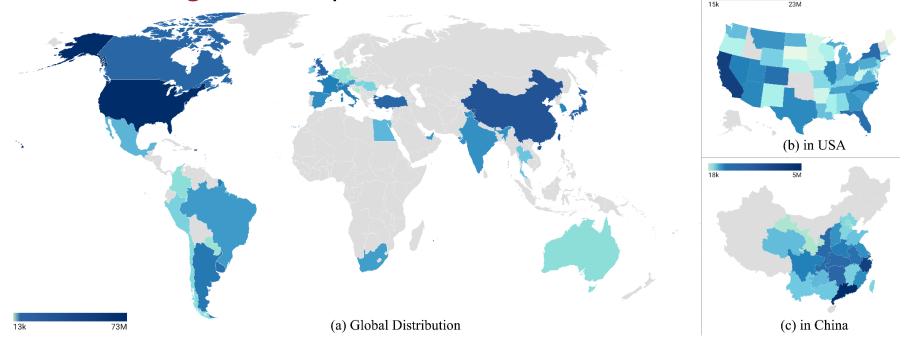
high-level

STO



Generalizable **Reward Function**

• How to build such a driving world model?


256×448

WoVoGen (2023/12)

Largest Public Driving Video Dataset

- Sourced from YouTube
- 370x larger than nuScenes 🛷
- 2059 hours, 40+ nations, 244+ cities, 65M+ frames
- Hours-long video samples

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

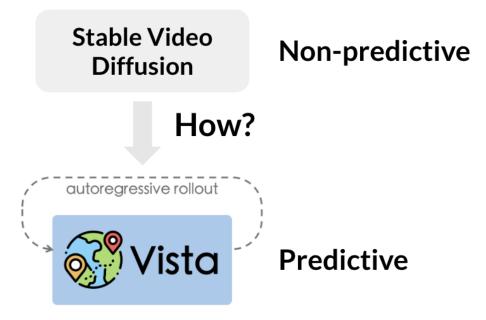
https://github.com/OpenDriveLab/DriveAGI

8

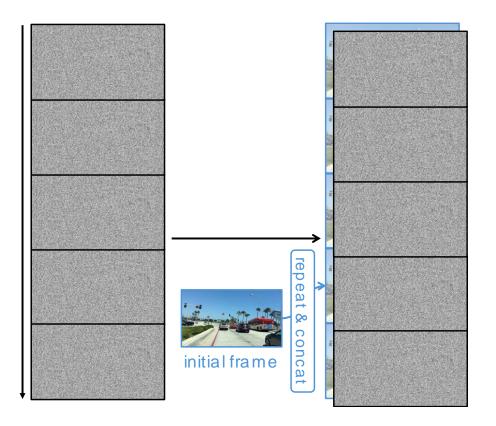
• <u>Base model</u>: SVD (image2video generation, non-predictive)

<u>Our objective</u>

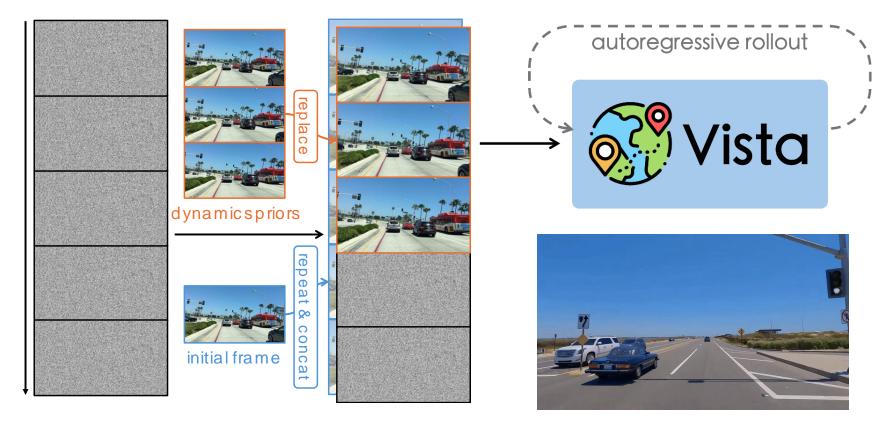
Os


15s

9

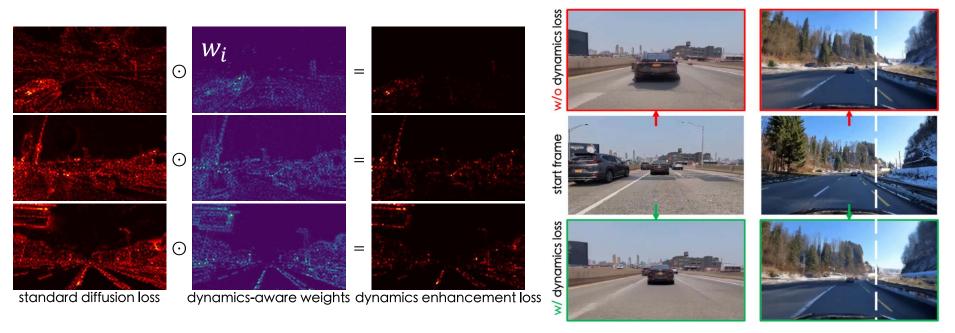

Coherent Long-Horizon Rollout

Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint arXiv:2311.15127 (2023).



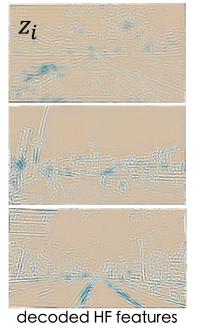
Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint arXiv:2311.15127 (2023).

• Impose the first frame as the condition image


• Inject previous frames as dynamic priors to enable coherent rollout

Improving Fidelity (for Driving Scenarios)

- Dynamics-critical regions only occupy a rather small area
- How to emphasize?
 - <u>Highlight motion disparities between prediction and ground truth</u>


$$w_i = \| (D_{\theta}(\hat{n}_i; \sigma) - D_{\theta}(\hat{n}_{i-1}; \sigma)) - (z_i - z_{i-1}) \|^2$$

Improving Fidelity (for Driving Scenarios)

- Generating fast-moving objects tend to result in corruptions
- How to alleviate?
 - <u>Enhance high-frequency structural information</u> (e.g., edges and lanes)

 $z'_i = \mathcal{F}(z_i) = \texttt{IFFT}ig(\mathcal{H} \odot \texttt{FFT}(z_i)ig)$

Multi-Modal Action Controllability

• Unified control interface for a versatile action suit

Multi-Modal Action Controllability

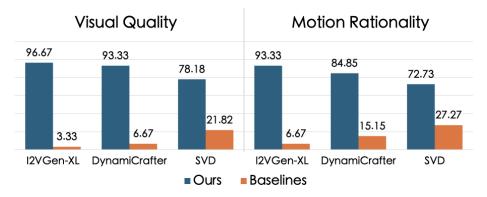
• <u>Two training phases</u>

- Effective learning strategies
 - Multi-stage (low-res \rightarrow high-res)
 - Parameter-efficient LoRA
 - Action independence constraint

World Model as A Reward Function

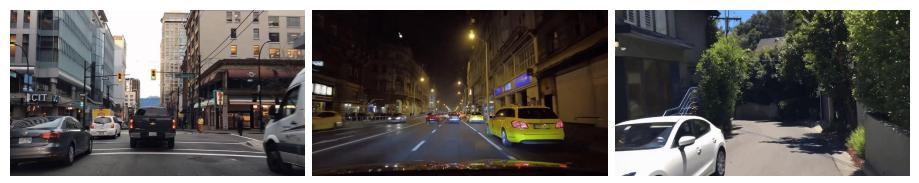
- Our insights
 - OOD action condition will increase prediction uncertainty
- Generalizable reward estimation
 - Conditional variance as a source of reward
 - Without referring to ground truth trajectories
 - Inherit the strong generalization ability of Vista
 - Could be used to evaluate actions in the wild

Ground Truth Action1 L2 Error: 0.94 Reward: 0.88 Action2 L2 Error: 1.36 Reward: 0.90


Quantitative Results

• Compared to existing driving world models

Metric	DriveGAN	DriveDreamer	WoVoGen	Drive-WM	GenAD	Vista
	[100]	[123]	[88]	[125]	[134]	(Ours)
$ \begin{array}{c c} \mathbf{FID} \downarrow \\ \mathbf{FVD} \downarrow \end{array} $	73.4	52.6	27.6	15.8	15.4	6.9
	502.3	452.0	417.7	122.7	184.0	89.4


• Compared to prominent video generators

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Visualization: Open-World Generalization

• Generalization to novel scenarios

• Coherent long-horizon rollout (up to 15s)

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural Information Processing Systems 38 (2024).

19

Visualization: Action Controllability

turn left

go straight

turn right

20

Visualization: Counterfactual Reasoning Ability

Could be used for close-loop simulation

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural Information Processing Systems 38 (2024).

21

Our Code and Model are Open-Sourced!

• OpenDV Dataset

https://github.com/OpenDriveLab/DriveAGI

- Vista Code & Model <u>https://github.com/OpenDriveLab/Vista</u>
- Video Demo <u>https://opendrivelab.com/Vista</u>

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.