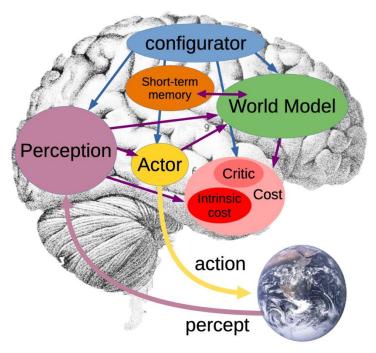
# Building Generalizable World Models for Autonomous Driving

Shenyuan Gao

## LeCun's AGI System

- Perception
  - Observe and estimate the world state
- Actor
  - Propose actions
- World model (core)
  - Predict plausible future state
- Cost
  - Evaluate the state

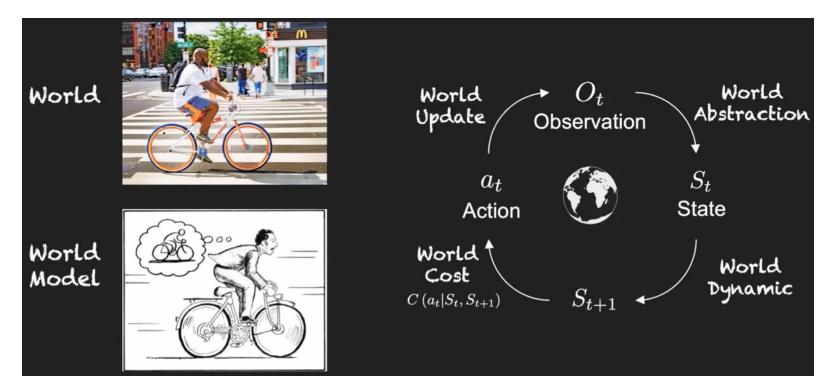




# What is "World Model"

- A substitute that simulates the real world
- Given previous states and actions, predict the future

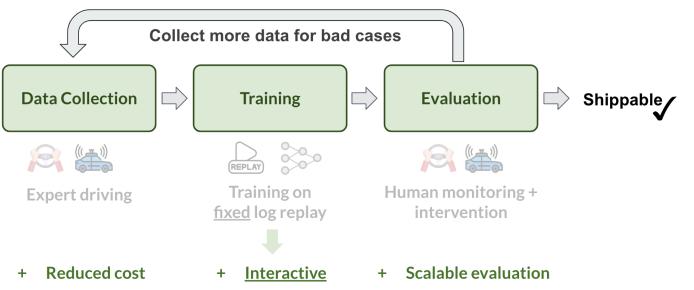
 $p(s_{t+1}|s_t, a_t)$ 



# **Introducing World Models to Autonomous Driving**



• Expectation



# **Limitations of Existing Driving World Models**

#### Generalization

Limited data scale and . geographic coverage



5 hours only Singapore & Boston 🛷

#### **Representation Capacity**

- Inferior fidelity
- Low resolution and frame rate



#### **Action Control**

- Single action modality •
- No zero-shot action controllability



#### Application

Underexplored



(2023/12)

(2023/09)

Not applicable for diverse real-world scenarios 

# **Our Goal**

#### Generalization

Limited data scale and geographic coverage



5 hours only Singapore & Boston 🛷

#### **Representation Capacity**

- Inferior fidelity
- Low resolution and frame rate



GenAD

(2024/03)





#### 288×512

(2023/09)



controllability

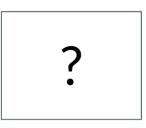
**Action Control** 

No zero-shot action

Single action modality •

#### Application

Underexplored







**High Fidelity High Resolution**  command goal point trajectory angle Versatile Action Controllability

high-level

STO

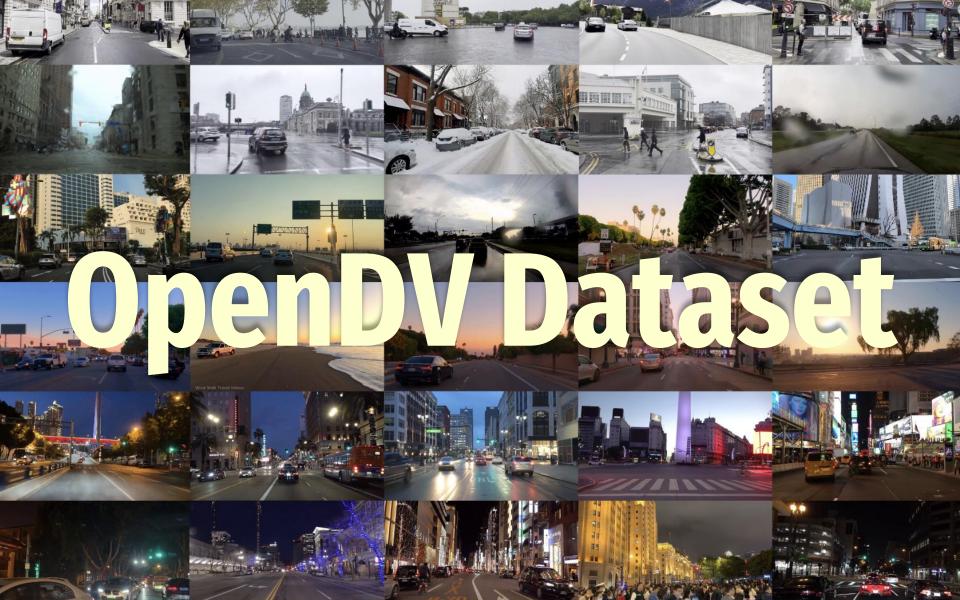


Generalizable **Reward Function** 

• How to build such a driving world model?

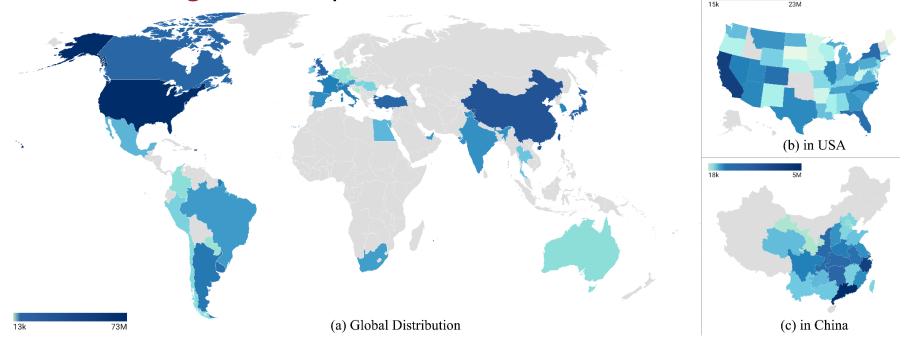
256×448

WoVoGen (2023/12)



## **Largest Public Driving Video Dataset**

- Sourced from YouTube
- 370x larger than nuScenes 🛷
- 2059 hours, 40+ nations, 244+ cities, 65M+ frames
- Hours-long video samples



Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

https://github.com/OpenDriveLab/DriveAGI

8

• <u>Base model</u>: SVD (image2video generation, non-predictive)



<u>Our objective</u>

Os

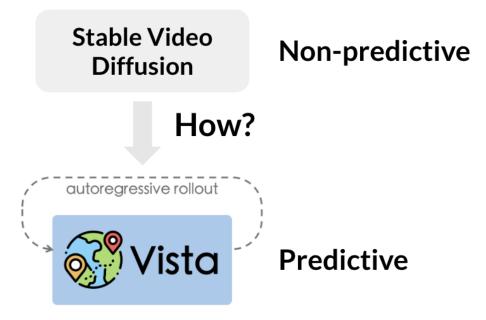
15s

9



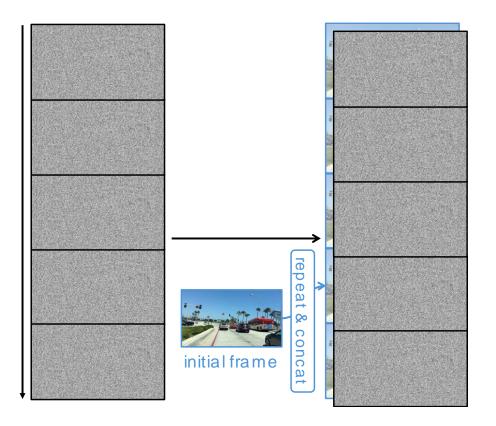
**Coherent Long-Horizon Rollout** 

Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint arXiv:2311.15127 (2023).

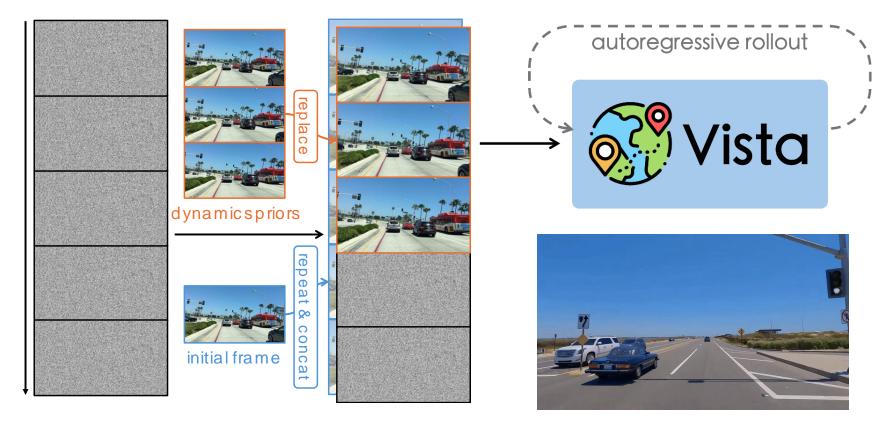


Blattmann, Andreas, et al. "Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets." arXiv preprint arXiv:2311.15127 (2023).

• Impose the first frame as the condition image



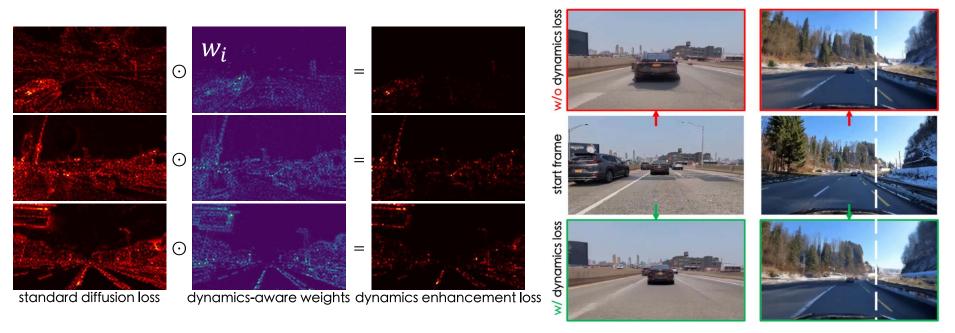
• Inject previous frames as dynamic priors to enable coherent rollout



# Improving Fidelity (for Driving Scenarios)

- Dynamics-critical regions only occupy a rather small area
- How to emphasize?
  - <u>Highlight motion disparities between prediction and ground truth</u>

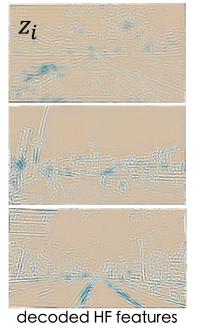
$$w_i = \| (D_{\theta}(\hat{n}_i; \sigma) - D_{\theta}(\hat{n}_{i-1}; \sigma)) - (z_i - z_{i-1}) \|^2$$



# **Improving Fidelity (for Driving Scenarios)**

- Generating fast-moving objects tend to result in corruptions
- How to alleviate?
  - <u>Enhance high-frequency structural information</u> (e.g., edges and lanes)

 $z'_i = \mathcal{F}(z_i) = \texttt{IFFT}ig(\mathcal{H} \odot \texttt{FFT}(z_i)ig)$ 





## **Multi-Modal Action Controllability**

• Unified control interface for a versatile action suit



# **Multi-Modal Action Controllability**

• <u>Two training phases</u>



- Effective learning strategies
  - Multi-stage (low-res  $\rightarrow$  high-res)
  - Parameter-efficient LoRA
  - Action independence constraint

# **World Model as A Reward Function**

- Our insights
  - OOD action condition will increase prediction uncertainty
- Generalizable reward estimation
  - Conditional variance as a source of reward
    - Without referring to ground truth trajectories
    - Inherit the strong generalization ability of Vista
    - Could be used to evaluate actions in the wild



Ground Truth Action1 L2 Error: 0.94 Reward: 0.88 Action2 L2 Error: 1.36 Reward: 0.90



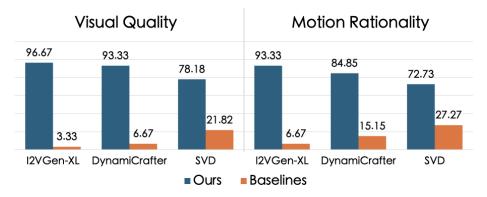
## **Quantitative Results**

• Compared to existing driving world models



| Metric                                                                                | DriveGAN | DriveDreamer | WoVoGen | Drive-WM | GenAD | Vista  |
|---------------------------------------------------------------------------------------|----------|--------------|---------|----------|-------|--------|
|                                                                                       | [100]    | [123]        | [88]    | [125]    | [134] | (Ours) |
| $ \begin{array}{c c} \mathbf{FID} \downarrow \\ \mathbf{FVD} \downarrow \end{array} $ | 73.4     | 52.6         | 27.6    | 15.8     | 15.4  | 6.9    |
|                                                                                       | 502.3    | 452.0        | 417.7   | 122.7    | 184.0 | 89.4   |

• Compared to prominent video generators



Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

### **Visualization: Open-World Generalization**

• Generalization to novel scenarios



#### • Coherent long-horizon rollout (up to 15s)



Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural Information Processing Systems 38 (2024).

19

## **Visualization: Action Controllability**

#### turn left

#### go straight

#### turn right











20





# **Visualization: Counterfactual Reasoning Ability**



#### Could be used for close-loop simulation

Gao, Shenyuan, et al. "Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability." Advances in Neural Information Processing Systems 38 (2024).

21

#### **Our Code and Model are Open-Sourced!**

#### • OpenDV Dataset

https://github.com/OpenDriveLab/DriveAGI

- Vista Code & Model <u>https://github.com/OpenDriveLab/Vista</u>
- Video Demo <u>https://opendrivelab.com/Vista</u>

Yang, Jiazhi, et al. "Generalized Predictive Model for Autonomous Driving." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.