

MagR: Weight Magnitude Reduction for Enhancing Post-Training Quantization

Aozhong Zhang¹, Naigang Wang², Yanxia Deng¹, Xin Li¹, Zi Yang¹, Penghang Yin¹

¹University at Albany, SUNY ²IBM T. J. Watson Research Center

Introduction

Large Language Models (LLMs) perform well but are limited by their size and computational demands. Low-precision Post-Training Quantization (PTQ) helps reduce these demands, though it may slightly affect accuracy compared to Quantization Aware Training (QAT) at very low precision. Recent PTQ advancements use **linear transformations** to make pre-trained weights easier to quantize by reducing magnitudes and suppressing outliers. In a nutshell, given the features *X* and weights *W*, a linear transformation *T* is applied to weights *W* to make *TW* more quantization-friendly than *W*. i.e.

$$XW = (XT^{-1})(TW) \approx (XT^{-1})Q(TW)$$

Q(TW) is the quantized weights. However, this PTQ method requires architecture changes and extra inference overhead. To overcome this, we propose MagR, a non-linear method with channel-wise l_{∞} -regularized least squares, reduces quantization scale without adding inference overhead.

$$\min_{\boldsymbol{W}\in\mathbb{R}^m}\frac{1}{2}\left\|\boldsymbol{X}\boldsymbol{W}-\boldsymbol{X}\widehat{\boldsymbol{W}}\right\|^2+\alpha\|\boldsymbol{W}\|_{\infty}$$

where α serves as the regularization parameter, balancing fidelity and regularization.

State University of New York

To address the l_{∞} -regularization problem, we develop a parallelizable proximal gradient descent algorithm that computes l_1 -ball projections at each iteration. MagR achieves two key goals:

• It preserves model performance with minimal accuracy loss and reduces quantization error.

Model	Method	Wikitext2 (PPLL)	C4 (PPLL)
	Original	5.47	6.97
LLaMA2-7B	MagR	5.52	7.04
	Original	4.88	6.46
LLaMA2-13B	MagR	4.92	6.52
	Original	3.31	5.52
LLaMA2-70B	MagR	3.35	5.56

Method

Proximal Gradient Descent

 l_{∞} -norm is convex but not differentiable. Instead of subgradient methods, we use proximal gradient algorithm to solve it, which matches the convergence rate of standard gradient descent. With the step size $\eta > 0$, proximal gradient descent takes the following iteration:

$$\boldsymbol{w}^{k+1} = \operatorname{prox}_{\eta \alpha \parallel \cdot \parallel_{\infty}} \left(\boldsymbol{w}^{k} - \eta \nabla_{\boldsymbol{w}} \frac{1}{2} \Vert \boldsymbol{X} \boldsymbol{w} - \boldsymbol{X} \widehat{\boldsymbol{w}} \Vert^{2} \right)$$

 $= \operatorname{prox}_{\eta \alpha \| \cdot \|_{\infty}} \left(\boldsymbol{w}^{k} - \eta \cdot \boldsymbol{X}^{T} \, \boldsymbol{X} (\boldsymbol{w}^{k} - \widehat{\boldsymbol{w}}) \right)$

where $\operatorname{prox}_{t \parallel \cdot \parallel_{\infty}}$ with the scalar t > 0 is the (scaled) proximal operator of l_{∞} -norm function, defined as:

$$\operatorname{prox}_{t\|\cdot\|_{\infty}}(\boldsymbol{\nu}) := \operatorname{arg\,min}_{\boldsymbol{x}\in\mathbb{R}^m} \frac{1}{2} \|\boldsymbol{x}-\boldsymbol{\nu}\|^2 + t \|\boldsymbol{x}\|_{\infty}$$

Proximal Operator of l_{∞} -Norm

It turns out we can compute it by leveraging the celebrated Moreau decomposition

$$\operatorname{prox}_{t\|\cdot\|_{\infty}}(\boldsymbol{v}) \coloneqq \boldsymbol{v} - t \cdot \operatorname{proj}_{\|\cdot\|_{1} \leq 1}\left(\frac{\boldsymbol{v}}{t}\right)$$

 $\operatorname{proj}_{\|\cdot\|_{1} \leq 1}(\boldsymbol{\nu}) := \operatorname{arg\,min}_{\boldsymbol{x} \in \mathbb{R}^{m}} \|\boldsymbol{x} - \boldsymbol{\nu}\|^{2} \, s. \, t. \, \|\boldsymbol{x}\|_{1} \leq 1$

Experiment

Language Generation

We tested MagR on Language Generation tasks. The results for LLaMA family are shown in the following tables. MagR consistently improves the performance of RTN and OPTQ. Moreover, MagR+OPTQ outperforms most methods across the LLaMA family models for both per-channel and per-group weight quantization.

Datasets			Wikitext2			C4		Datasets			Wik	itext2			С	4	
LLaMA /	PPL↓	2-7B	2-13B	2-70B	2-7B	2-13B	2-70B	LLaMA	/ PPL↓	1-7B	1-13B	1-30B	1-65B	1-7B	1-13B	1-30B	1-65B
FP16	Baseline	5.47	4.88	3.31	6.97	6.46	5.52	FP16	•	5.68	5.09	4.10	3.53	7.08	6.61	5.98	5.62
	OPTQ	7.7e3	2.1e3	77.95	NAN	323.12	48.82		ΟΡΤΟ	2.1e3	5 5e3	499 75	55.91	689.13	2.5e3	169.80	40.58
W2A16	OmniQuant	37.37	17.21	7.81	90.64	26.76	12.28	W2A16	OmniQuant	15 47	13 21	8 71	7 58	24.80	18 31	13.80	10.77
W 21110	QuIP	27.13	10.09	6.33	31.33	13.13	8.94	W2/110		10.09	0.41	<u><u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	6.41	24.69	16.31	13.09	8.87
	MagR+OPTQ [†]	16.73	11.14	5.95	23.73	14.45	8.53		MagK+OF IQ	19.90	15 (0	10.02	0.41	24.09	15.00	11.02	11.00
W2A16	OPTQ	36.77	28.14	-	33.70	20.97	-		OPIQ	44.01	15.60	10.92	9.51	27.71	15.29	11.93	11.99
g128	OmniQuant	11.06	8.26	6.55	15.02	11.05	8.52	W2A16	OmniQuant	9.72	7.93	7.12	5.95	12.97	10.36	9.36	8.00
8	MagR+OPTQ	9.94	7.63	5.52	14.08	10.57	8.05	g128	MagR+OPTQ	9.89	9.22	6.72	6.41	13.14	10.62	8.05	9.14
	RTN	539.48	10.68	7.52	402.35	12.51	10.02		RTN	25.73	11.39	14.95	10.68	28.26	13.22	28.66	12.79
W3A16	OPTQ	8.37	6.44	4.82	9.81	8.02	6.57	W3A16	OPTQ	8.06	6.76	5.84	5.06	9.49	8.16	7.29	6.71
	AWQ	24.00	10.45	-	23.85	13.07	-		AWQ	11.88	7.45	10.07	5.21	13.26	9.13	12.67	7.11
	OmniQuant	6.58	5.58	3.92	8.65	7.44	6.06		OmniQuant	6.49	5.68	4.74	4.04	8.19	7.32	6.57	6.07
	QuIP	6.50	5.34	3.85	8.74	7.34	6.14		MagR+RTN	7.93	6.71	5.66	4.79	9.77	8.46	7.38	6.87
	MagR+RTN	8.66	6.55	4.64	10.78	8.26	6.77		MagR+OPTO	6.86	5.43	4.73	42	8 65	7.21	6.56	616
	MagR+OPTQ	6.41	5.41	3.82	8.23	7.19	6.03		RTN	7.01	5.88	4.87	4.24	8.62	7 40	6.58	6.10
	RTN	6.66	5.51	3.97	8.40	7.18	6.02			6 55	5.60	4.80	4.17	7.85	7.10	6.47	6.00
W3A16	OPTQ	6.29	5.42	3.85	7.89	7.00	5.85	W3A16	OFIQ	0.55	5.02	4.00	4.17	7.05	7.10	0.47	5.00
g128	AWQ	6.24	5.32	-	7.84	6.94	-	g128	AWQ	0.40	5.51	4.03	3.99	7.92	7.07	0.37	5.94
	OmniQuant	6.03	5.28	3.78	7.75	6.98	5.85		OmniQuant	6.15	5.44	4.56	3.94	7.75	7.05	6.37	5.93
	MagR+RTN	6.46	5.45	3.95	8.22	7.12	6.00		MagR+RTN	6.90	5.50	4.82	4.17	8.46	7.19	6.52	6.02
	MagR+OPTQ	6.00	5.23	3.71	7.77	6.93	5.84		MagR+OPTQ	6.29	5.41	4.52	3.95	7.78	7.09	6.38	5.93
	RTN	6.11	5.20	3.67	7.71	6.83	5.79		RTN	6.43	5.55	4.57	3.87	7.93	6.98	6.34	5.85
	OPTQ	5.83	5.13	3.58	7.37	6.70	5.67		OPTQ	6.13	5.40	4.48	3.83	7.43	6.84	6.20	5.80
W4A16	AWQ	6.15	5.12	-	7.68	6.74	-	****	AWQ	6.08	5.34	4.39	3.76	7.52	6.86	6.17	5.77
	OmniQuant	5.74	5.02	3.47	7.35	6.65	5.65	W4A16	OmniOuant	5.86	5.21	4.25	3.71	7.34	6.76	6.11	5.73
	QuIP	5.94	5.01	3.53	8.01	6.88	5.87		MagR+RTN	6.16	5.42	4.36	3.80	7.66	6.87	6.22	5.82
	MagR+RTN	5.91	5.17	3.58	7.52	6.81	5.72		MagR+OPTO	6.03	5 23	4 24	3 72	7 39	677	6.13	5 75
	MagR+OPTQ	5.70	4.97	3.44	7.28	6.63	5.63			0.05	5.25	7.27	5.12	1.59	0.77	0.15	5.15

Zero-shot tasks

We evaluated the performance of quantized models on four zero-shot tasks, shown in the following table.

LLaMA2 / Acc↑	WBits	Method	ARC-C	ARC-E	PIQA	Winogrande	Avg.
	FP16	-	40.0	69.3	78.5	67.3	63.8
	4	OmniQuant	37.9	67.8	77.1	67.0	62.5
	4	MagR+OPTQ	39.3	68.4	78	66.5	63.1
II MAD 7D	3	OmniQuant	35.3	62.6	73.6	63.6	58.8
LLawA2-7D	3	MagR+OPTQ	34.6	62	74.7	63	58.6
	2	OmniQuant	21.6	35.2	57.5	51.5	41.5
	2	QuIP	19.4	26.0	54.6	51.8	37.5
	2	$MagR+OPTQ^{\dagger}$	22.0	36.7	59.8	51.1	42.4
	FP16	-	45.6	73.3	79.1	69.6	66.9
	4	OmniQuant	43.1	70.2	78.4	67.8	64.9
	4	QuIP	44.9	73.3	79	69.7	66.7
	4	MagR+OPTQ	44.2	72.0	78.0	68.6	65.7
11 MA2 12D	3	OmniQuant	42.0	69.0	77.7	65.9	63.7
LLawiA2-15D	3	QuIP	41.5	70.4	76.9	69.9	64.7
	3	MagR+OPTQ	42.2	69.0	77.7	66.5	63.9
	2	OmniQuant	23.0	44.4	62.6	52.6	45.7
	2	QuIP	23.5	45.2	62.0	52.8	63.7 64.7 63.9 45.7 45.9
	2	$MagR+OPTQ^{\dagger}$	23.2	44.3	62.4	52.1	45.5
	FP16	-	51.1	77.7	81.1	77.0	71.7
	4	OmniQuant	49.8	77.9	80.7	75.8	71.1
	4	QuIP	47.0	74.3	80.3	76.0	69.4
	4	MagR+OPTQ	50.1	77.5	80.8	76.0	71.1
LL MA2 70P	3	OmniQuant	47.6	75.7	79.7	73.5	69.1
LLawiA2-70D	3	QuIP	46.3	73.2	80.0	74.6	68.5
	3	MagR+OPTQ	47.7	76.6	79.4	75.4	69.8
	2	OmniQuant	28.7	55.4	68.8	53.2	51.5
	2	QuIP	34.0	62.2	74.8	67.5	59.6
	2	$MagR+OPTQ^{\dagger}$	35.9	61.3	74.7	64.8	59.2

The adaptive capacity of MagR

We investigated the combined effects of MagR and QuIP. MagR significantly enhances the performance of QuIP on LLaMA2 models family.

Datasets		Wik	itext2	C4			
LLaMA /	PPL↓	2-7B	2-13B	2-7B	2-13B		
FP16	Baseline	5.47	4.88	6.97	6.46		
W2A16	QuIP	27.13	10.09	31.33	13.13		
	MagR+QuIP	13.31	9.40	14.49	11.07		
W3A16	QuIP	6.50	5.34	8.74	7.34		
	MagR+QuIP	6.25	5.29	7.88	7.02		
W4A16	QuIP	5.94	5.01	8.01	6.88		
	MagR+QuIP	5.74	4.99	7.25	6.63		

Concluding Remarks

This paper introduces MagR, a method to shrink weight sizes in pre-trained language models, helping improve accuracy in common quantization methods. By grouping weights closer together, MagR allows for smaller quantization steps. Experiments on LLaMA models show state-of-the-art performance without any inference overhead, making MagR practical for quantized model deployment.

Thank you!