

Frequency-aware Generative Models for Multivariate Time Series Imputation

Xinyu Yang¹, Yu Sun¹, ⊠, Xiaojie Yuan¹, and Xinyang Chen²,⊠

¹ College of Computer Science, DISSec, Nankai University, China ² School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China

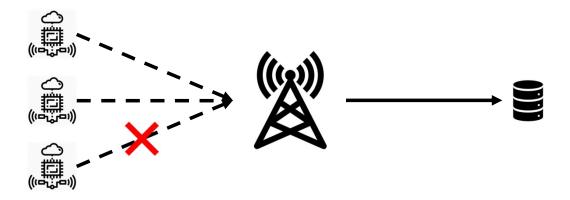
December, 2024

CONTENTS

- Background
- > FGTI Method
- > Experiments
- Conclusion

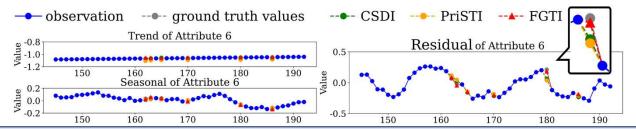
Background

- > Multivariate time series appear in many applications
 - e.g. Air Quality, Traffic, Healthcare
- > Time Series data often contain missing values
 - could be harmful for downstream tasks



Background

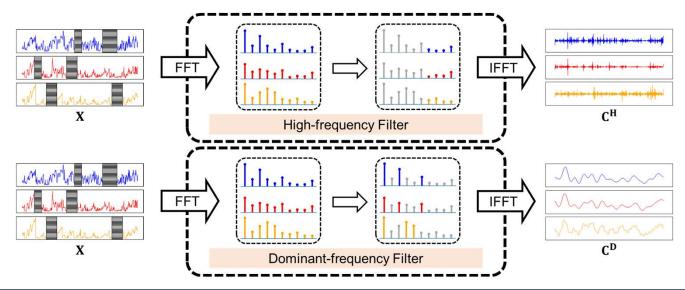
- > Time Series data can be decomposed into three terms can be decomposed into three terms
- The imputation error is mainly caused by **Residual** term



- ➤ **High-frequency components** are intricately related to Residual
- Existing SOTA imputation methods with deep learning architectures **cannot generalize well** for high frequency components

FGTI Model

☐ Frequency-domain Condition Filters



- ➤ **High-frequency Filter:** Guide the imputation of residual terms
- **Dominant-frequency Filter:** Provide the background structure information to guide the imputation of the trend and seasonal terms

FGTI Model

Implement FGTI with the current advanced generative model

Algorithm 1 Training process

Input: Incomplete time series X, the number of diffusion step T **Output:** Optimized denoising network $\epsilon_{\theta}(\cdot)$

- 1: repeat
- 2: $\hat{\mathbf{X}}^0 \leftarrow$ select observed values in \mathbf{X}
- 3: $t \sim \text{Uniform}\{1, \dots, T\}$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: $\hat{\mathbf{X}}^t \leftarrow \sqrt{\overline{\alpha^t}} \hat{\mathbf{X}}^0 + \sqrt{1 \overline{\alpha^t}} \epsilon$
- 6: Perform Gradient Descent by $\nabla \mathcal{L}_{\theta} = \nabla_{\theta} \left\| \epsilon \epsilon_{\theta} \left(t, \hat{\mathbf{X}}^{t}, \mathbf{X}^{\mathbf{C}}, \mathbf{C}^{\mathbf{H}}, \mathbf{C}^{\mathbf{D}} \right) \right\|^{2}$
- 7: until converged

Algorithm 2 Imputation process

Input: A incomplete time series sample X, the number of diffusion step T, the optimized denoising network $\epsilon_{\theta}(\cdot)$

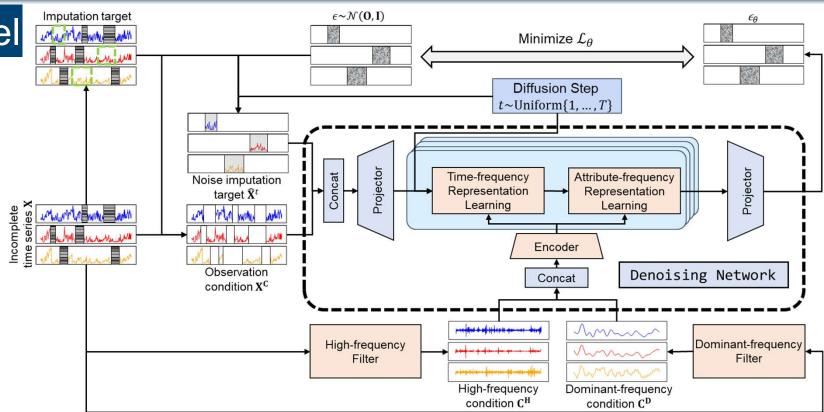
Output: Filled missing values $\hat{\mathbf{X}}^0$

- 1: $\hat{\mathbf{X}} \leftarrow \text{missing values in } \mathbf{X}$
- 2: $\hat{\mathbf{X}}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 3: **for** t = T, ..., 1 **do**
- 4: if t > 1 then
- 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: else
- 7: $\epsilon \leftarrow \mathbf{0}$
- 8: end if

9:
$$\hat{\mathbf{X}}^{t-1} \leftarrow \frac{1}{\sqrt{\overline{\alpha^{t}}}} \left[\hat{\mathbf{X}}^{t} - \frac{\beta^{t}}{\sqrt{1-\overline{\alpha^{t}}}} \epsilon_{\theta} \left(t, \hat{\mathbf{X}}^{t}, \mathbf{X}, \mathbf{C^{H}}, \mathbf{C^{D}} \right) \right] + \sqrt{\frac{\left(1 - \overline{\alpha^{t-1}} \right) \beta^{t}}{1 - \overline{\alpha^{t}}} \epsilon}$$

10: end for

FGTI Model



> Cross-domain Representation Learning Modules

Fusing frequency-domain information to capture time dependencies and attribute dependencies by cross-attention mechanism

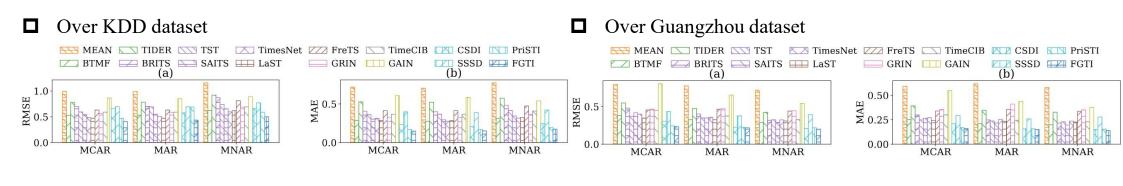
Experiments

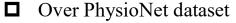
Imputation results by different methods with different missing rates.

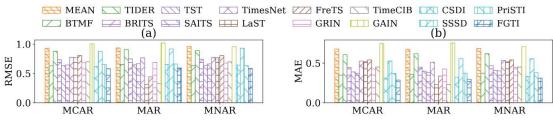
Dataset	Miss.	Metric Me	an I	3TMF	TIDER	BRITS	TST	SAITS	TimesNe	t LaST FreTS	GRIN'	TimeCIE	GAIN CSDI SSSD	PriSTl	FGTI
KDD	10%	RMSE 0.9	93	0.529	0.777	0.700	0.594	0.542	0.484	0.473 0.630	0.565	0.589	0.864 0.459 0.697	0.472	0.406
		MAE 0.7	18	0.285	0.527	0.407	0.360	0.304	0.313	0.287 0.412	0.322	0.367	0.607 0.177 0.397	0.169	0.149
	20%	RMSE 1.0	07	0.554	0.797	0.729	0.740	0.575	0.542	0.532 0.741	0.607	0.613	0.877 0.500 0.701	0.534	0.451
		MAE 0.7	18	0.286	0.531	0.416	0.371	0.310	0.307	0.310 0.489	0.339	0.369	0.606 0.187 0.392	0.180	0.161
	30%	RMSE 0.9	97	0.541	0.783	0.720	0.642	0.574	0.578	0.574 0.796	0.617	0.603	0.870 0.519 0.717	0.547	0.448
		MAE 0.7	17	0.286	0.528	0.420	0.376	0.319	0.357	0.350 0.546	0.360	0.370	0.612 0.199 0.413	0.195	0.176
	40%	RMSE 1.0	01	0.548	0.790	0.734	0.702	0.593	0.648	0.634 0.850	0.650	0.611	0.883 0.569 0.747	0.581	0.478
		MAE 0.7	18	0.287	0.532	0.428	0.387	0.332	0.418	0.393 0.591	0.387	0.372	0.623 0.220 0.435	0.217	0.205
Guang.	10%	RMSE 0.7	99	0.384	0.549	0.481	0.368	0.417	0.400	0.347 0.456	0.466	0.451	0.804 0.306 0.434	0.242	0.230
		MAE 0.5	92	0.252	0.392	0.299	0.249	0.264	0.270	0.244 0.340	0.354	0.300	0.550 0.210 0.293	0.170	0.170
	20%	RMSE 0.7	99	0.384	0.537	0.481	0.398	0.415	0.433	0.440 0.602	0.501	0.448	0.804 0.324 0.460	0.324	0.258
		MAE 0.5	92	0.252	0.382	0.300	0.275	0.264	0.303	0.312 0.460	0.385	0.298	0.550 0.220 0.315	0.197	0.176
	30%	RMSE 0.7	99	0.384	0.536	0.485	0.442	0.420	0.481	0.545 0.709	0.542	0.448	0.805 0.364 0.545	0.510	0.291
		MAE 0.5	92	0.252	0.382	0.301	0.312	0.267	0.348	0.388 0.547	0.419	0.298	0.551 0.242 0.384	0.271	0.202
	40%	RMSE 0.8	00	0.385	0.541	0.491	0.540	0.422	0.542	0.637 0.787	0.584	0.449	0.807 0.439 0.622	0.650	0.356
		MAE 0.5	92	0.253	0.387	0.306	0.397	0.270	0.401	0.458 0.611	0.455	0.299	0.554 0.283 0.444	0.381	0.254
Phy.	10%	RMSE 0.9			(200 TE (50.00)	(0) (0) (0) (0)			0.776	0.768 0.804		0.697	1.006 0.619 0.875		
		MAE 0.6	78	0.348	0.605	0.446	0.389	0.371	0.525	0.516 0.540	0.424	0.450	0.747 0.310 0.528	0.369	0.286
	20%	RMSE 0.9	35	0.627	0.889	0.718	0.640	0.641	0.806	0.786 0.825	0.670	0.683	0.988 0.664 0.834	0.638	0.577
		MAE 0.6	75	0.362	0.624	0.451	0.417	0.384	0.569	0.550 0.576	0.434	0.455	0.740 0.335 0.507	0.376	0.309
	30%	RMSE 0.9	34	0.658	0.911	0.734	0.688	0.670	0.849	0.825 0.861	0.695	0.697	0.995 0.805 0.882	0.661	0.624
		MAE 0.6	76	0.382	0.638	0.457	0.452	0.404	0.600	0.578 0.603	0.446	0.459	0.738 0.360 0.545	0.387	0.336
	40%	RMSE 0.9	32	0.677	0.935	0.739	0.732	0.688	0.872	0.850 0.883	0.708	0.698	0.983 0.705 0.904	0.679	0.669
		MAE 0.6	77	0.412	0.658	0.466	0.493	0.431	0.623	0.603 0.626	0.464	0.466	0.729 0.395 0.555	0.406	0.376

Experiments

> Imputation results by different methods with different missing mechanisms (10% missing)

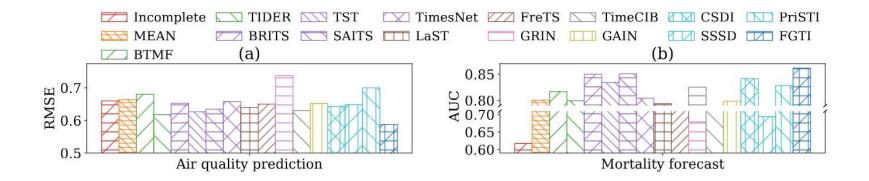






Experiments

Application performance of imputation methods for downstream tasks, over KDD and PhysioNet with real missing values



Conclusion

- > We design a frequency-aware generative model FGTI with frequency-domain information integrated by the **high-frequency filter** and the **dominant-frequency filter**, to enhance the awareness of the frequency-domain for imputation.
- ➤ We introduce two **cross-domain representation learning modules** that provide models with prior knowledge of intricate frequency-related patterns for missing data imputation.
- We evaluate FGTI on three time series datasets with real-world missing values, which demonstrates the superiority of FGTI in both imputation accuracy and downstream applications

Thanks for your attention

If you are interested in our work, please check the details in our paper at the NeurIPS 2024.

Email: yangxinyu@dbis.nankai.edu.cn https://github.com/FGTI2024/FGTI24