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What is survival analysis?

○ A very common outcome in medical studies is the time until an event occurs: 

– The time until a patient dies 

– The time until a patient suffers a heart attack 

– The time until a liver transplant patient needs a new liver 

– The time until the recurrence of cancer following treatment 

○ Data involving such an outcome is often called “time-to-event” data or “failure-time 
data” or “survival” data, and the branch of statistics that deals with analyzing these 
data is called survival analysis 
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Figure. An illustration of survival data

Survival data

○ Survival (a.k.a. time-to-event) data

– 𝐱: Observed features (covariates)

– 𝜏: Time-to-event or time-to-censoring elapsed 
since the baseline (e.g., the entry to a clinical trial)

– 𝛿: Label indicating whether event the event or the 
censoring occurred

𝒟 = 𝐱𝑖, 𝜏𝑖, 𝛿𝑖 𝑖=1
𝑁
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○ Survival (a.k.a. time-to-event) data

– 𝐱: Observed features (covariates)

– 𝜏: Time-to-event or time-to-censoring elapsed 
since the baseline (e.g., the entry to a clinical trial)

– 𝛿: Label indicating whether event the event or the 
censoring occurred

○ Distinct Characteristics:  Right-censoring

𝒟 = 𝐱𝑖, 𝜏𝑖, 𝛿𝑖 𝑖=1
𝑁

Figure. An illustration of survival data

Right-censoring

Survival data
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○ Notations

– 𝑇 ∈ ℝ+ be the random variable for time-to-event

– 𝐶 ∈ ℝ+ be the random variables for time-to-censoring

○ Right-censoring indicates when censoring occurs before the event of interest is 
observed. Denoting 𝑡 and 𝑐 be the realizations of r.v.s 𝑇 and 𝐶, we have

– Often assume “independent censoring”, i.e., 𝑃 𝑇, 𝐶 𝑋 = 𝐱 = 𝑃 𝑇 𝑋 = 𝐱 𝑃(𝐶|𝑋 = 𝐱)

Survival data

𝛿 = 𝕀 𝑡 ≤ 𝑐 𝜏 = min 𝑡, 𝑐
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○ Our goal

– Provides the probability an event occurring as a function of time and patient features

– Provides understanding of interactions between features and the time-to-event outcomes

○ We want to use partial information from the right-censored samples:

– Censoring implies that the event will occur after the censoring time

Solution: Survival Analysis
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○ Formally, we want to estimate the survival function given 𝐱

– 𝑇 ∈ ℝ+: Random variable for the time-to-event

– 𝐱:  Patient input feature

○ Or equivalently, we want to estimate the risk function given 𝐱

𝑅 𝑡 𝐱 = 1 − 𝑆 𝑡 𝐱 = ℙ(𝑇 ≤ 𝑡|𝐱)

Important quantities : Survival / Risk function

probability an event occurring before time t

𝑆 𝑡 𝐱 = ℙ(𝑇 > 𝑡|𝐱)
probability an event occurring after time t
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○ Discriminate patients’ risks of having an event of interest

Time-to-Event
Models
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True Survival Curve
Estimated Survival Curve
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patient A

True Survival Curve
Estimated Survival Curve

✓Discriminative
✗Calibrated

✓Discriminative
✓Calibrated

Consideration

• Age : 55
• Stage : 2B
• ER+ / PR +

• Event time : 32 days

. . .

Patient A

• Age : 45
• Stage : 3A
• ER- / PR -

• Event time : 14 days

. . .

Patient B
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Objective : Negative log-likelihood loss

○ The log-likelihood of the time-to-events for survival dataset → unbiased

– Event is observed (i.e., 𝛿𝑖 = 1), knowing that the event occurred at time 𝜏𝑖 

– Event is not observed (i.e., 𝛿𝑖 = 0), knowing that the event will occur after time 𝜏𝑖 

ℒ𝑁𝐿𝐿 = − log ෑ
𝑖=1

𝑁

Ƹ𝑝 𝜏𝑖 𝐱𝑖
𝛿𝑖 ⋅ መ𝑆 𝜏𝑖 𝐱𝑖

1−𝛿𝑖

= − ෍
𝑖=1

𝑁

𝛿𝑖 log Ƹ𝑝 𝜏𝑖 𝐱𝑖 + 1 − 𝛿𝑖 log መ𝑆 𝜏𝑖 𝐱𝑖
for censoredfor uncensored
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○ Often augmented with the NLL loss to enhance the discriminative power

○ Aim to maximize a relaxed proxy of the concordance index

– Well-established metric for evaluating the quality of patient rankings based on 
the risk predictions of survival model

Objective : Ranking loss

ℒ𝑅𝑎𝑛𝑘 = ෍
𝑖≠𝑗

𝐴𝑖,𝑗 ⋅ 𝜂 ෠𝑅 𝜏𝑖 𝐱𝑖 , ෠𝑅 𝜏𝑖 𝐱𝑗
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• ෠𝑅 𝜏𝑖 𝐱𝑖 < ෠𝑅 𝜏𝑖 𝐱𝑗 (X)
• Penalizes the estimated Risk Function
 ෠𝑅 𝜏𝑖 𝐱𝑖 ෠𝑅 𝜏𝑖 𝐱𝑗

Case 1: Correctly ordered pairs Case 2: Wrongly ordered pairs

• ෠𝑅 𝜏𝑖 𝐱𝑖 > ෠𝑅 𝜏𝑖 𝐱𝑗  (O)
• Rewards the estimated Risk Function
 ෠𝑅 𝜏𝑖 𝐱𝑖  ෠𝑅 𝜏𝑖 𝐱𝑗

where                                                         ℒ𝑅𝑎𝑛𝑘 = ෍
𝑖≠𝑗

𝐴𝑖,𝑗 ⋅ 𝜂 ෠𝑅 𝜏𝑖 𝐱𝑖 , ෠𝑅 𝜏𝑖 𝐱𝑗
acceptable pairs

Objective : Ranking loss

𝐴𝑖,𝑗 = 𝕀 𝛿𝑖 = 1, 𝜏𝑖  < 𝜏𝑗  

and 𝜂 𝑥, 𝑦 = exp − 𝑥−𝑦
𝜎

𝑅
𝜏

𝐱

𝑅
𝜏

𝐱

𝜏𝑖 𝜏𝑗

𝑅 𝜏𝑖 𝐱i

𝑅 𝜏𝑖 𝐱j
𝑅 𝜏𝑖 𝐱j

𝑅 𝜏𝑖 𝐱i

𝜏𝑖 𝜏𝑗
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○ Combining NLL with ranking loss enhances discrimination but compromises 
calibration, harming the clinical utility of predicted survival outcomes. 

○ Ranking loss directly modifies model outputs, potentially leading to misalignment 
with the actual risk distribution.

– Typically based on exponential, log-sigmoid, or linear functions

Challenges

Model Ranking Loss

DeepHit exp(−( ෠𝑅(𝜏𝑖| 𝐱𝐢) − ෠𝑅 𝜏𝑖 𝐱𝒋 /𝜿) 

DCS exp(−( መ𝑆(𝜏𝑖| 𝐱𝐣) − መ𝑆 𝜏𝑖 𝐱𝒊 /𝜿) 

LowerCI log 𝜎( ෠𝑅(𝜏𝑖| 𝐱𝐢) − ෠𝑅 𝜏𝑖 𝐱𝒋  

SSMTL ෠ℎ 𝜏𝑖 𝐱𝒋  − ෠ℎ 𝜏𝑖 𝐱𝐢
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○ Propose a novel contrastive learning approach for deep survival model

– Differentiate each sample by their survival outcome, leveraging contrastive learning 
framework

– Overcomes ranking loss limitations from directly comparing model outcome in the form 
of risk/survival function. 

Motivation

Patient 1
Patient 3

Patient 4Patient 2

embedding space

Time-to-Event
Models

Ranking Loss Function

Patient 1
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Patient 2

Patient 4
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○ The encoder, 𝑓𝜃 : 𝒳 → ℋ, takes features 𝐱 ∈ 𝒳 as input and outputs latent 
representation, i.e., 𝐡 = 𝑓𝜃(𝐱).

Proposed Method : Network components

𝑎𝑢𝑔(⋅)

𝑥

ℎ𝑓𝜃 ⋅

𝑥+ ℎ+𝑓𝜃 ⋅

sh
ar

ed

𝑥
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Proposed Method : Network components

ℎ

ℎ+

𝑔𝜓 ⋅

𝑔𝜓 ⋅

z

𝑧+
sh

ar
ed

○ The projection head., 𝑔𝜓 : ℋ → ℝ𝑑, maps latent representation 𝐡 to the
embedding space where contrastive learning is applied, i.e., 𝒛 = 𝑓𝜃(𝐡).
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○ Contrastive Learning Network

– By passing the original, positive, and negative samples through 𝑓 = 𝑔𝜓 ∘ 𝑓𝜃, computing 
our survival outcome-based contrastive learning loss function ℒ𝑆𝑁𝐶𝐸

Proposed Method : Network components

𝑎𝑢𝑔(⋅)

𝑥

ℎ𝑓𝜃 ⋅

𝑥+ ℎ+𝑓𝜃 ⋅

𝑔𝜓 ⋅

𝑔𝜓 ⋅

ℒ𝑆𝑁𝐶𝐸
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Latent Space
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○ Goal : Aligns with our inductive bias that patients with similar survival outcomes 
should share similar clinical status, which manifests through similar representations. 

○ Noise Contrastive Estimation (NCE)

– To learn mapping 𝑓 = 𝑔𝜓 ∘ 𝑓𝜃 utilizing a positive sample 𝐱+ ∼ 𝑝𝑋+ , and negative 
samples 𝐱− ∼ 𝑞

– 𝑀 : scaling term which is set to the batch size, 𝑠 𝐱, 𝐱′  = 𝑓 𝐱 𝑇𝑓(𝐱′)
𝑓 𝐱 ⋅||𝑓 𝐱′ ||

– omit the corresponding temperature 𝜈 and write 𝑒𝑠 𝐱, 𝐱−
 to denote 𝑒𝑠 𝐱, 𝐱− /𝜈

Proposed Method : Contrastive Learning for SA

𝔼 𝐱∼ 𝑝𝑋
𝐱+∼ 𝑝𝑋+

−log
𝑒𝑠 𝐱, 𝐱+

𝑀 ⋅ 𝔼𝐱−∼𝑞 𝑒𝑠 𝐱, 𝐱−
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○ Key aspect of NCE : selecting negative samples to differentiate the anchor sample

○ To reflect the difference in the time-to-events in the embedding space, we design a 
novel distribution 𝑞 by utilizing the available information from survival outcomes. 

Proposed Method : Contrastive Learning for SA

19



○ To accurately distinguish patients based on their time-to-event outcomes, we fully 
utilize the time-to-event information 

○ Hence, given an anchor 𝐱, 𝜏  and a negative 𝐱−; 𝜏− , we define the weight 
function, 𝜎 > 0 is a temperature coefficient.

– This function is a variant of the Laplacian Kernel, which assigns larger weights to 
samples with large differences in time-to-event outcomes, and smaller weights to 
samples with small differences

Proposed Method : Contrastive Learning for SA

𝑤 𝜏−; 𝜏 = 1 − 𝑒  𝜏−𝜏−  /𝜎
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○ Designing 𝑞 based on the following inductive bias : similar patients are more likely to 
experience the event at similar time points than the ones who are not. 

○ We will slightly abuse the notation 𝑤 𝐱−; 𝐱 to denote 𝑤 𝜏−; 𝜏

Proposed Method : Contrastive Learning for SA

𝑞 𝐱−; 𝐱 =
1
𝑍 𝑤 𝐱−; 𝐱 𝑝 𝐱−

normalizing constant Z = 1
M

σj=1
M w xj

−;  x
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○ Importance sampling using survival outcomes

𝐸𝑥−∼ 𝑞 𝑒𝑠 𝑥,𝑥− = 𝐸𝑥−∼ 𝑝
𝑞 𝑥−; 𝑥

𝑝 𝑥− · 𝑒𝑠 𝑥,𝑥−

                                          = 𝐸𝑥−∼ 𝑝
𝑤 𝑥−;𝑥

𝑍
· 𝑒𝑠 𝑥,𝑥−

≈ 1
𝑍·𝑀

σ𝑗=1
M 𝑤 𝑥𝑗

−;  𝑥 · 𝑒𝑠 𝑥,𝑥𝑗
−

 

normalizing constant Z = 1
M

σj=1
M w xj

−;  x

Proposed Method : Contrastive Learning for SA
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○ Survival outcome-aware NCE (SNCE) loss

Proposed Method : Contrastive Learning for SA

ℒ𝑆𝑁𝐶𝐸 = ෍
𝑖=1

𝑁

− log
𝑒𝑠 𝑥𝑖 , 𝑥𝑖

+

1
𝑍 σ𝑗=1

𝑀 𝑤 𝑥𝑗
−; 𝑥𝑖 · 𝑒𝑠 𝑥𝑖 , 𝑥𝑗

−
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○ case 1 : Both samples are uncensored(i.e., have observed events)

Proposed Method : Handling Right-Censoring

𝜏𝑖case 1
𝜏𝑗
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𝜏𝑗

Proposed Method : Handling Right-Censoring

case 3
𝜏𝑖

?

?
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○ case 2 : Both samples are censored 



Proposed Method : Handling Right-Censoring

𝜏𝑗𝜏𝑖case 2

?
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○ case 3 : One is uncensored and the other is censored.  



Proposed Method : Handling Right-Censoring

case 2
𝜏𝑗𝜏𝑖

?
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○ case 3 : One is uncensored and the other is censored.  



○ case 3 : One is uncensored and the other is censored.  

Proposed Method : Handling Right-Censoring

𝜏𝑗𝜏𝑖case 2

?

𝜏𝑗𝜏𝑖case 2

?

𝜏𝑗

margin
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○ Redefine the weight function considering the right-censoring as 

Proposed Method : Handling Right-Censoring

𝜏𝑗𝜏𝑖case 2

?
margin

𝜏𝑖case 1
𝜏𝑗
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Proposed Method : Network components

○ The hazard network., 𝑓𝜙 : ℋ ×  𝒯 → [0,1], predicts the hazard rate at each time 
point 𝑡 ∈ 𝒯 given input latent representation 𝐡, i.e., ෠λ t 𝐱 = 𝑓𝜙 𝐡, 𝑡 = 𝑓𝜙 𝑓𝜃 𝐱 , 𝑡

𝑡 𝑓𝜙 ⋅

𝜆1 𝜆𝑇𝑚𝑎𝑥
. . .

ℎℎ
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Important quantities : Hazard function

○ The hazard function, 𝜆(𝑡), is the instantaneous rate of failure at time 𝑡, given that 
an individual has survived until at least time 𝑡:

○ There is an important relationship between the survival and hazard functions:

𝜆 𝑡|𝐱 = 𝑃 𝑇 = 𝑡 𝑇 ≥  𝑡 , 𝐱for 𝑡 ∈ {1,2, … }

𝑆 𝑡|𝐱 = 𝑃 𝑇 > t 𝐱)
= 𝑃 𝑇 ≠ 1 𝐱) ⋅ 𝑃 𝑇 ≠ 2 𝑇 > 1, 𝐱) ⋅⋅⋅ 𝑃 𝑇 = 𝑡 𝑇 > 𝑡 − 1, 𝐱)
= 𝑃(1 − 𝜆 1 𝐱)) ⋅ 𝑃(1 − 𝜆 2 𝐱)) ⋅ ⋅⋅⋅  ⋅ 𝑃(1 − 𝜆 𝑡 𝐱))

= ෑ
𝑡′≤𝑡

1 − 𝜆 𝑡′|𝐱

       31



○ Negative Log-likelihood

– Hazard estimate is defined as a function of time given an input feature, we can naturally 
model the time-varying effect of input features on risk/survival functions.

Proposed Method : Network components

ℒ𝑁𝐿𝐿

ො𝑝 𝑡 𝑥

መ𝑆 𝑡 𝑥

Time

uncensored
censored

, ,
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○ Negative Log-likelihood

– Then, compute ℒ𝑁𝐿𝐿
𝜃,𝜙  by plugging in 𝑓𝜙 𝑓𝜃 𝐱 , 𝑡  into Ƹ𝑝 and መ𝑆

– Ƹ𝑝 𝜏 𝐱 = 𝑓𝜙 𝑓𝜃 𝐱 , 𝜏 ς𝑡′≤𝜏−1 1 − 𝑓𝜙 𝑓𝜃 𝐱 , 𝑡′ , መ𝑆 𝜏 𝐱 = ς𝑡′≤𝜏 1 − 𝑓𝜙 𝑓𝜃 𝐱 , 𝑡′

Proposed Method : Network components

ℒ𝑁𝐿𝐿

ො𝑝 𝑡 𝑥

መ𝑆 𝑡 𝑥

Time

uncensored
censored

, ,
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○ Overall, we can estimate the hazard function by training ConSurv with a loss
function that combines the NLL loss and the SNCE loss, where 𝛽 is a balancing 
coefficient

Proposed Method : Network components

ℒ𝑇𝑜𝑡𝑎𝑙 
𝜃,𝜙,𝜓 = ℒ𝑁𝐿𝐿

𝜃,𝜙 + 𝛽ℒ𝑆𝑁𝐶𝐸
𝜃,𝜓
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Experiments Setup : Datasets & Benchmarks & Metrics 

Dataset No. 
Uncensored

No. 
Censored

No. Features
(Real, Binary, Category)

METABRIC 888 (55.2%) 1093 (44.8%) 21 (6, 0, 15)

NWTCO 571 (14.2%) 3457 (85.5%) 6 ( 1, 4, 1)

GBSG 1267 (56.8%) 965 (43.2%) 7 ( 4, 2, 1)

FLCHAIN 4562 (69.9%) 1962 (30.3%) 8 (4, 2, 2)

SUPPORT 6036 (68.1%) 2837 (31.9%) 14 ( 8, 3, 3)

SEER 604 (1.11%) 53940 (98.9%) 12 (4, 5, 3)

Loss Function Type Model

Partial Log-likelihood
ML CoxPH

DL DeepSurv

Ranking Loss
DL DeepHit

DL DRSA

Calibration Loss 
DL DCS

DL X-CAL

○ Metrics 
Evaluation Metric Type Range

Concordance Index (CI) Discrimination 0.000 ~ 1.000 ↑

Integrated Brier Score (IBS) Calibration 0.000 ~ 1.000 ↓

Distribution Divergence for Calibration (DDC) Calibration 0.000 ~ 1.000 ↓

D-calibration (D-CAL) Calibration P-value>0.05 ×

○ Benchmarks ○ Datasets
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Experiments : Quantitative Analysis

36



Experiments : Quantitative Analysis

37



Experiments : Qualitative Analysis

○ Effect of Contrastive Learning

– ℒ𝑁𝐿𝐿 only, ℒ𝑆𝑁𝐶𝐸 only, and ConSurv (i.e., ℒ𝑁𝐿𝐿 & ℒ𝑆𝑁𝐶𝐸)

– significantly improves the alignment of representations with event time information
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Experiments : Qualitative Analysis

○ Comparing calibration plot of ConSurv with the DL-based survival models 

– The x=y line represents the ideal state where predicted probabilities perfectly match the 
observed outcome
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Experiments : Qualitative Analysis

○ Subgroup Analysis

– To confirm the calibration performance of survival models, compare their survival plots 
with the Kaplan-Meier (KM) curve

– KM curve provides a non-parametric estimate of survival function 
at population level

– Examine three binary hormone receptor status in the METABRIC dataset: 
estrogen receptor (ER) ,human epidermal growth factor receptor 2 (HER2), and 
progesterone receptor (PR)

40



Experiments : Qualitative Analysis

○ Subgroup Analysis

(c) PR

(b) ER(a) HER2
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○ Subgroup Analysis

– To quantitatively assess calibration performance, compare the survival predictions of 
each model with the KM curves for each subgroup using the Wasserstein distance

Experiments : Qualitative Analysis

42



Discussion & Future works

43

○ Survival data often lacks clear event times complicating learning due to censored 
data. 

– Potential avenues include modifying models to account for uncertainties or developing 
alternative learning approaches

– Need for new evaluation metrics that consider the characteristics 

○ Limited augmentation techniques in tabular data reduce model robustness 
– Explore augmentation methods suitable for survival datasets to enhance contrastive 

learning performance



Thank you
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