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What is survival analysis?

o Avery common outcome in medical studies is the time until an event occurs:
— The time until a patient dies
— The time until a patient suffers a heart attack
— The time until a liver transplant patient needs a new liver

— The time until the recurrence of cancer following treatment

o Data involving such an outcome is often called “time-to-event” data or “failure-time
data” or “survival” data, and the branch of statistics that deals with analyzing these
data is called survival analysis



Survival data

o Survival (a.k.a. time-to-event) data
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Figure. An illustration of survival data



Survival data

o Survival (a.k.a. time-to-event) data

Right-censoring
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Figure. An illustration of survival data

o Distinct Characteristics: Right-censoring



Survival data

o Notations
— T € R, be the random variable for time-to-event

— C € R, be the random variables for time-to-censoring

o Right-censoring indicates when censoring occurs before the event of interest is
observed. Denoting t and ¢ be the realizations of r.v.s T and C, we have

65 =1(t <c) T = min(t, ¢)

— Often assume “independent censoring”, i.e., P(T,C|X = x) = P(T|X = x)P(C|X = x)



Survival Analysis

o Our goal
— Provides the probability an event occurring as a function of time and patient features

— Provides understanding of interactions between features and the time-to-event outcomes

o We want to use partial information from the right-censored samples:

— Censoring implies that the event will occur after the censoring time



Important quantities : Survival / Risk function

o Formally, we want to estimate the survival function given x

S(t|x) = P(T > t|x)

probability an event occurring after time t

— T € R,: Random variable for the time-to-event

— x: Patient input feature

o Or equivalently, we want to estimate the risk function given x

R(tlx) =1 - S(t|x) = P(T < t|x)

probability an event occurring before time t



Consideration

o Discriminate patients’ risks of having an event of interest
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Objective : Negative log-likelihood loss

o The log-likelihood of the time-to-events for survival dataset - unbiased
— Eventis observed (i.e., §; = 1), knowing that the event occurred at time ;

— Eventis not observed (i.e., §; = 0), knowing that the event will occur after time t;

['NLL

N
— log l_[[ﬁ (7;1x)% - S(x; |Xi)(1_6i)]
=1

L=

N
- 2[&' log p(7;|x;) + (1 — &) log S (v;1x,)
=1

i for uncensored for censored
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Objective : Ranking loss

o Often augmented with the NLL loss to enhance the discriminative power
o Aim to maximize a relaxed proxy of the concordance index

— Well-established metric for evaluating the quality of patient rankings based on
the risk predictions of survival model

Lrank = Z Ai,j N (ﬁ(Tilxi)» R\(Ti‘xf))

L#]
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Objective : Ranking loss

['Rank —

i+j acceptable pairs

Case 1: Correctly ordered pairs
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Challenges

o Combining NLL with ranking loss enhances discrimination but compromises
calibration, harming the clinical utility of predicted survival outcomes.

o Ranking loss directly modifies model outputs, potentially leading to misalignment
with the actual risk distribution.

— Typically based on exponential, log-sigmoid, or linear functions

Model Ranking Loss
DeepHit exp(—(R(z;| x;) — R(7i|x;)/K)
DCS exp(—(S(t;| x5) — S(;lx;) /1)
LowerCl log o (R(7;| %) — R(7ix;)
SSMTL A(ti|x;) — A(zilx;)




Motivation

o Propose a novel contrastive learning approach for deep survival model

— Differentiate each sample by their survival outcome, leveraging contrastive learning

framework

— Overcomes ranking loss limitations from directly comparing model outcome in the form
of risk/survival function.
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Proposed Method : Network components

o The encoder, f,: X — H, takes features x € X as input and outputs latent
representation, i.e., h = fy(x).

ag() N xt = fo() 1 AT
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Proposed Method : Network components

o The projection head., g,,: H - R4, maps latent representation h to the
embedding space where contrastive learning is applied, i.e., z = fy(h).

p

h > glp(')]—’ v/
1A%
gr

h* g¢(')]—' z*
-




Proposed Method : Network components

o Contrastive Learning Network

— By passing the original, positive, and negative samples through f = g, ° fg, computing
our survival outcome-based contrastive learning loss function Leycr
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Proposed Method : Contrastive Learning for SA

o Goal : Aligns with our inductive bias that patients with similar survival outcomes
should share similar clinical status, which manifests through similar representations.

o Noise Contrastive Estimation (NCE)

— To learn mapping f = gy, © fp utilizing a positive sample X" ~ py+, and negative
samples x™ ~ ¢

N _
. l es(x, xt)
x~px |—108 -
. s(x, x
X ~py+ | M- Ex-—q [es€ )]_
_ ] . . . . 1y — f(X)Tf(X')
M : scaling term which is set to the batch size, s(x,x") TGO

— omit the corresponding temperature v and write eS®*7) to denote eS*x)/v
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Proposed Method : Contrastive Learning for SA

o Key aspect of NCE : selecting negative samples to differentiate the anchor sample

o To reflect the difference in the time-to-events in the embedding space, we design a
novel distribution g by utilizing the available information from survival outcomes.

19



Proposed Method : Contrastive Learning for SA

o To accurately distinguish patients based on their time-to-event outcomes, we fully
utilize the time-to-event information

o Hence, given an anchor (x,7) and a negative (x~; 77), we define the weight
function, o > 0 is a temperature coefficient.

— This function is a variant of the Laplacian Kernel, which assigns larger weights to

samples with large differences in time-to-event outcomes, and smaller weights to
samples with small differences

wr;1)=1—el™T T 1/0
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Proposed Method : Contrastive Learning for SA

o Designing g based on the following inductive bias : similar patients are more likely to
experience the event at similar time points than the ones who are not.

o We will slightly abuse the notation w(x~; x) to denote w(t~; 1)

1
q(xX7;x) = EW(X_; X)p(X™)

.. 1 —
normalizing constant Z = szl‘il w(xj ; X)
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Proposed Method : Contrastive Learning for SA

o Importance sampling using survival outcomes

e[ = By |(TE2) o)

by () )]

~ ﬁzjzl W(x._; x) . es(x'xj_)

- _ 1 oM —
normalizing constant Z —szzlw(xj ; X)
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Proposed Method : Contrastive Learning for SA

o Survival outcome-aware NCE (SNCE) loss

N

Lsnce = 2

=1

—log(

es(xi,x{’)

1

Z

M
j=1

W(xj";xl-) . es(

xl,x]

)
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Proposed Method : Handling Right-Censoring

o case 1 : Both samples are uncensored(i.e., have observed events)

case 1l
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Proposed Method : Handling Right-Censoring

o case 2. Both samples are censored

case 3
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Proposed Method : Handling Right-Censoring

o case 3 : Oneis uncensored and the other is censored.

Ti i
case 2
0 <
Q N\
Q'\’ .Q'\"
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Proposed Method : Handling Right-Censoring

o case 3 : Oneis uncensored and the other is censored.

case 2
% <
Y\
N g'y
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Proposed Method : Handling Right-Censoring

o case 3 : One is uncensored and the other is censored.

case 2 >

case 2 >
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Proposed Method : Handling Right-Censoring

o Redefine the weight function considering the right-censoring as

T; Tj
case 1l
O <
Q\;Q Y
Q
q?" f\?‘
> >
?
margin
T; C——) Tj
case 2
9% )
QY QY



Proposed Method : Network components

o The hazard network., f,:H X T — [0,1], predicts the hazard rate at each time

point t € T given input latent representation h, i.e., A(t|x) = fo(h,t) = fo(fo(%), 1)

&
& 2‘1 . . L] ATma.x

x?"x\ X
t| h fo() ]
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Important quantities : Hazard function

o The hazard function, A(t), is the instantaneous rate of failure at time t, given that
an individual has survived until at least time t:

AMt|x) =P(T =t|IT = t,xhpree{12..}
o There is an important relationship between the survival and hazard functions:

S(t|x) =P(T > t| x)
=P(T#1|x)-P(T#2|T>1,%x)-P(T=t|T>t—1,x)
=P(1-2(11|x))-P(1-2A(12|x)): - -P(1—-A(t]|x))
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Proposed Method : Network components

o Negative Log-likelihood

— Hazard estimate is defined as a function of time given an input feature, we can naturally
model the time-varying effect of input features on risk/survival functions.

_________
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Proposed Method : Network components

o Negative Log-likelihood

— Then, compute Lf,fi by plugging in f,(fs(x),t) into p and S

~ Pl = £ (fo(0, D Mgy (1 = fpfo (), t)), SR = v (1= £ (o3, ))

_________
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Proposed Method : Network components

o Overall, we can estimate the hazard function by training ConSurv with a loss
function that combines the NLL loss and the SNCE loss, where £ is a balancing
coefficient

0,09 _
LTotal o NLL + IBLSNCE
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Experiments Setup : Datasets & Benchmarks & Metrics

o Benchmarks

Loss Function Type Model
ML CoxPH
Partial Log-likelihood
DL DeepSurv
_ DL DeepHit
Ranking Loss
DL DRSA
DL DCS
Calibration Loss
DL X-CAL

o Datasets
Dataset No. No. No.. Features
Uncensored Censored | (Real, Binary, Category)
METABRIC | 888 (55.2%) 1093 (44.8%) 21 (6, 0, 15)
NWTCO 571 (14.2%) | 3457 (85.5%) 6(1,4,1)
GBSG 1267 (56.8%) | 965 (43.2%) 7(4,2,1)
FLCHAIN 4562 (69.9%) | 1962 (30.3%) 84, 2,2)
SUPPORT | 6036 (68.1%) | 2837 (31.9%) 14 (8, 3, 3)
SEER 604 (1.11%) | 53940 (98.9%) 12 (4, 5, 3)
o Metrics
Evaluation Metric Type Range
Concordance Index (Cl) Discrimination | 0.000 ~1.000 | T
Integrated Brier Score (I1BS) Calibration 0.000 ~1.000 | !
Distribution Divergence for Calibration (DDC) Calibration 0.000 ~1.000 | !
D-calibration (D-CAL) Calibration P-value>0.05 | X
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Experiments : Quantitative Analysis

METABRIC NWTCO
METHOD CIt IBS | DDC | D-CAL CIt IBS | DDC | D-CAL
CoxPH 0.645i0,019 0.175:]:0,023 0.11110,024 25 0.716i0,025 0.108:1:0,008 0.515:]:0,022 25
DEEPSURV 0.625:|:0.025 0.183:1_-0_029 0-103:|:0.026 25 0.640:}:0.080 0.117:{:0_011 0.792:1:0.011 24
DEEPHIT 0.604+0.019 0.204+0.018 0.29240.017 0 0.717+0.028 0.14340.024 0.657+0.024 12
DRSA 0.604+0.032 0.24940.038 0.178+0.060 0 0.70940.019 0.2814+0.041 0.21840.065 0
DCS 0.612:|:0.029 0.2065:0,043 0.054:|:0,039 2 0-642:|:0.036 0.119;{:0.018 0.2095:0,043 19
X-CAL 0.632+0.027 0.18240.023 0.065+0.037 2 0.6224+0.037 0.12840.025 0.191_¢.079 12
Ly 0.64210.022 0.197+0.030 0.077+0.020 13 0.707+0.024 0.109+0.008 0.556-+0.041 23
Lnir & Lyce | 0.659+0.020 0.19340.029  0.0804+0.022 21 0.71540.024  0.108+0.009 0.563+0.054 22
Lnir & Lrank | 0.65240.022  0.24740.030 0.177+0.020 0 0.717+0.027  0.137+0.008 0.653+0.050 0
CONSURV | 0.665.0.023 0.186+0.021 0.110+0.024 23 | 0.71810025 0.10719.008 0.554+0.045 24
SUPPORT SEER
METHOD CIt IBS | DDC | D-CAL CIt IBS | DDC | D-CAL
CoxPH 0-604:l:0.006 0-191:t0.005 0.26210,013 0 0.858;&;0,018 0.009;&;0_005 0.966:|:o,003 25
DEEPSURV 0.603+0.090 0.19240.007 0.245+0.036 0 0.814+0.020 0.010+0.000 1.000+0.000 25
DEEPHIT 0.503+0.000 0.27240.003 0.337+0.006 0 0.840+0.033 0.020+0.001  0.836+0.003 0
DRSA 0.570+0.009 0.259+0.015 0.486+0.084 0 0.834+0.07s 0.0211+0.015 0.6711¢.135 0
DCS 0.598+0.008 0.207+0.012 0.175+0.032 0 0.860+0.020 0.010+0.001  0.91140.044 21
X-CAL 0.603+0.007 0.2044+0.012 0.181+0.025 0 0.837+0.040 0.01540.006 0.900+0.049 18
LniL 0.606+0.006 0.193+0.008 0.123+0.019 0 0.854+0.016 0.009+0.001 0.867+0.009 25
Lyir & Lnce | 0.608+0.007 0.19240.007 0.127+0.021 0 0.859+0.017 0.01240.003 0.964+0.006 25
Lnir & Lrank | 0.617+0.007  0.173+0.008  0.231+0.024 0 0.862+0.017 0.13940.000  1.0004+0.000 0
CONSURY I 0.616:]:0_005 0-190:i:0.006 0.148i0.023 0 | 0.864&0.016 0°009i0.001 0.863i0,006 25
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Experiments : Quantitative Analysis
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o Effect of Contrastive Learning

Experiments : Qualitative Analysis

Ly only, Lonecg ONly, and ConSuryv (i.e., Ly & Loncr)

significantly improves the alignment of representations with event time information
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Experiments : Qualitative Analysis

o Comparing calibration plot of ConSurv with the DL-based survival models

— The x=y line represents the ideal state where predicted probabilities perfectly match the
observed outcome

1.0 = 1.0 = 1.0 - 1.0 % 1.0
[ ConSurv /' 3 ConSurv /' =3 ConSurv ," 3 ConSurv & =3 ConSurv

| .
c 991 = Deepsurv 7 091 == DeepHit | 091 = brsa | 091 == bes & 097 = xcaL -
% é P y
L % . 2 7




Experiments : Qualitative Analysis

o Subgroup Analysis

— To confirm the calibration performance of survival models, compare their survival plots
with the Kaplan-Meier (KM) curve

— KM curve provides a non-parametric estimate of survival function
at population level

— Examine three binary hormone receptor status in the METABRIC dataset:

estrogen receptor (ER) ,human epidermal growth factor receptor 2 (HER2), and
progesterone receptor (PR)
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Experiments : Qualitative Analysis

o Subgroup Analysis

Survival Probability
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Experiments : Qualitative Analysis

o Subgroup Analysis

— To quantitatively assess calibration performance, compare the survival predictions of
each model with the KM curves for each subgroup using the \Wasserstein distance

ER HER2 Size PR
Subgroup

CoxPH 0.030 0.108 0.063 0.089 0.049 0.067 0.076 0.044
DeepSurv  0.033 0.115 0.066 0.101 0.054 0.074 0.105 0.089
DeepHit 0.063 0.082 0.146 0.156 0.043 0.102 0.233 0.033
DRSA  0.181 0.293 0.233 0.328 0.205 0.276 0.118 0.234
DCS 0.130 0.146 0.087 0.178 0.154 0.126 0.091 0.124
X-CAL 0.136 0.165 0.105 0.180 0.159 0.148 0.060 0.176
ConSurv  0.024 0.077 0.044 0.089 0.043 0.042 0.060 0.025




Discussion & Future works

o Survival data often lacks clear event times complicating learning due to censored
data.

— Potential avenues include modifying models to account for uncertainties or developing
alternative learning approaches

— Need for new evaluation metrics that consider the characteristics
o Limited augmentation techniques in tabular data reduce model robustness

— Explore augmentation methods suitable for survival datasets to enhance contrastive
learning performance
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Thank you
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