# Toward a Well-Calibrated Discrimination through Survival Outcome-Aware Contrastive Learning

#### **Dongjoon Lee\***

Chung-Ang University dongzza97@cau.ac.kr

#### **Hyeryn Park\***

Chung-Ang University hyeryn2000@cau.ac.kr

#### Changhee Lee

Korea University changheelee@korea.ac.kr

AI-LAB: Actionable Intelligence Lab https://sites.google.com/view/actionable-intelligence

#### Outline

- o Introduction to Survival Analysis
- o Consideration
- o Objective
- o Challenges and Motivation
- o Proposed Method
- o Experiments

### What is survival analysis?

- A very common outcome in medical studies is the time until an event occurs:
  - The time until a patient dies
  - The time until a patient suffers a heart attack
  - The time until a liver transplant patient needs a new liver
  - The time until the recurrence of cancer following treatment

 Data involving such an outcome is often called "time-to-event" data or "failure-time data" or "survival" data, and the branch of statistics that deals with analyzing these data is called survival analysis

#### **Survival data**

o Survival (a.k.a. time-to-event) data

 $\mathcal{D} = \{(\mathbf{x}_i, \tau_i, \delta_i)\}_{i=1}^N$ 

- x: Observed features (covariates)
- $\tau$ : Time-to-event or time-to-censoring elapsed since the baseline (e.g., the entry to a clinical trial)
- $\delta$ : Label indicating whether event the event or the censoring occurred

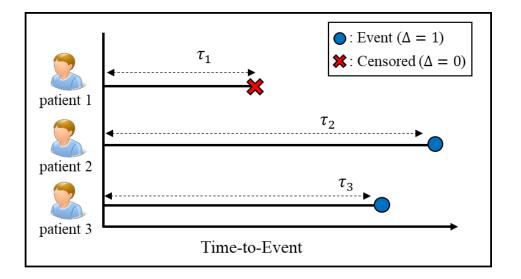


Figure. An illustration of survival data

#### **Survival data**

o Survival (a.k.a. time-to-event) data

 $\mathcal{D} = \{(\mathbf{x}_i, \tau_i, \delta_i)\}_{i=1}^N$ 

- x: Observed features (covariates)
- $\tau$ : Time-to-event or time-to-censoring elapsed since the baseline (e.g., the entry to a clinical trial)
- $\delta$ : Label indicating whether event the event or the censoring occurred

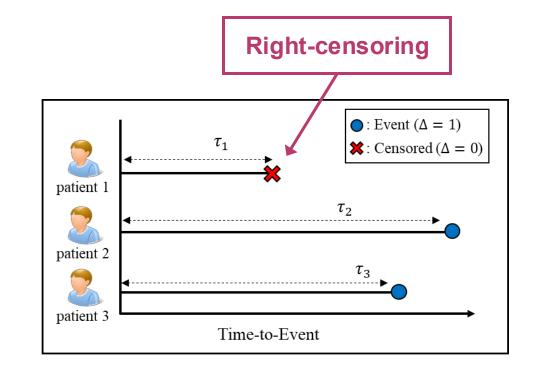


Figure. An illustration of survival data

• Distinct Characteristics: **Right-censoring** 

#### **Survival data**

#### o Notations

- $T \in \mathbb{R}_+$  be the random variable for time-to-event
- $C \in \mathbb{R}_+$  be the random variables for time-to-censoring
- Right-censoring indicates when censoring occurs before the event of interest is observed. Denoting *t* and *c* be the realizations of r.v.s *T* and *C*, we have

$$\delta = \mathbb{I}(t \le c)$$
  $\tau = \min(t, c)$ 

- Often assume "independent censoring", i.e.,  $P(T, C|X = \mathbf{x}) = P(T|X = \mathbf{x})P(C|X = \mathbf{x})$ 

## **Solution:** Survival Analysis

#### • Our goal

- Provides the probability an event occurring as a function of time and patient features
- Provides understanding of interactions between features and the time-to-event outcomes

- We want to use partial information from the right-censored samples:
  - Censoring implies that the event will occur after the censoring time

### Important quantities : Survival / Risk function

 $\circ$  Formally, we want to estimate the survival function given x

$$S(t|\mathbf{x}) = \mathbb{P}(T > t|\mathbf{x})$$

probability an event occurring after time t

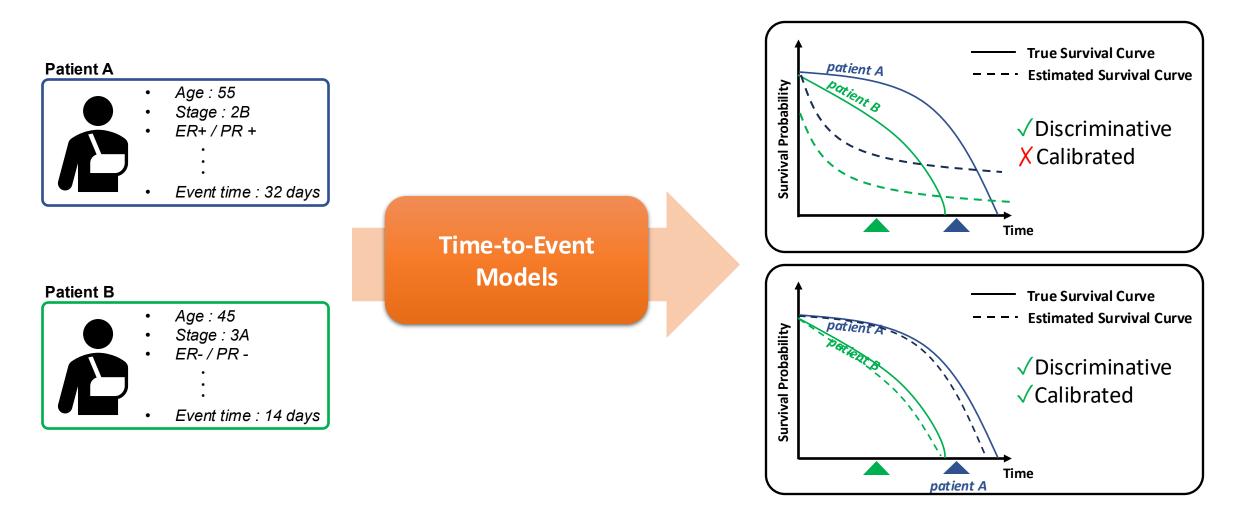
- $T \in \mathbb{R}_+$ : Random variable for the time-to-event
- x: Patient input feature
- $\circ~$  Or equivalently, we want to estimate the risk function given x

$$R(t|\mathbf{x}) = 1 - S(t|\mathbf{x}) = \mathbb{P}(T \le t|\mathbf{x})$$

probability an event occurring before time t

#### Consideration

• Discriminate patients' risks of having an event of interest



#### **Objective : Negative log-likelihood loss**

- The log-likelihood of the time-to-events for survival dataset  $\rightarrow$  unbiased
  - Event is observed (i.e.,  $\delta_i = 1$ ), knowing that the event occurred at time  $\tau_i$
  - Event is not observed (i.e.,  $\delta_i = 0$ ), knowing that the event will occur after time  $\tau_i$

$$\mathcal{L}_{NLL} = -\log \prod_{i=1}^{N} \left[ \hat{p}(\tau_i | \mathbf{x}_i)^{\delta_i} \cdot \hat{S}(\tau_i | \mathbf{x}_i)^{(1-\delta_i)} \right]$$
$$= -\sum_{i=1}^{N} \left[ \frac{\delta_i \log \hat{p}(\tau_i | \mathbf{x}_i)}{\int for \text{ uncensored}} + \frac{(1-\delta_i) \log \hat{S}(\tau_i | \mathbf{x}_i)}{\int for \text{ censored}} \right]$$

- Often augmented with the NLL loss to enhance the discriminative power
- Aim to maximize a relaxed proxy of the concordance index
  - Well-established metric for evaluating the quality of patient rankings based on the risk predictions of survival model

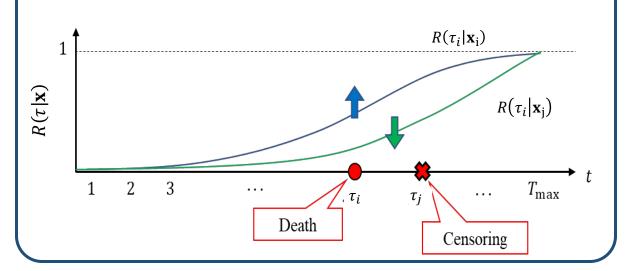
$$\mathcal{L}_{Rank} = \sum_{i \neq j} A_{i,j} \cdot \eta \left( \hat{R}(\tau_i | \mathbf{x}_i), \hat{R}(\tau_i | \mathbf{x}_j) \right)$$

## **Objective : Ranking loss**

$$\mathcal{L}_{Rank} = \sum_{i \neq j} \underline{A_{i,j}} \cdot \eta \left( \widehat{R}(\tau_i | \mathbf{x}_i), \widehat{R}(\tau_i | \mathbf{x}_j) \right)$$

#### **Case 1: Correctly ordered pairs**

- $\hat{R}(\tau_i | \mathbf{x}_i) > \hat{R}(\tau_i | \mathbf{x}_j)$  (O)
- Rewards the estimated Risk Function  $\hat{R}(\tau_i | \mathbf{x}_i)$   $\hat{R}(\tau_i | \mathbf{x}_i)$



re 
$$A_{i,j} = \mathbb{I}(\delta_i = 1, \tau_i < \tau_j)$$
  
and  $\eta(x, y) = \exp\left(\frac{-(x-y)}{\sigma}\right)$ 

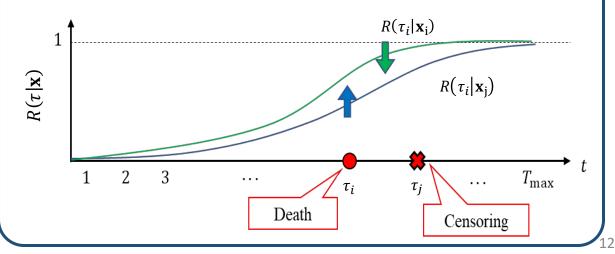
#### **Case 2: Wrongly ordered pairs**

•  $\hat{R}(\tau_i | \mathbf{x}_i) < \hat{R}(\tau_i | \mathbf{x}_j)$  (X)

whe

Penalizes the estimated Risk Function





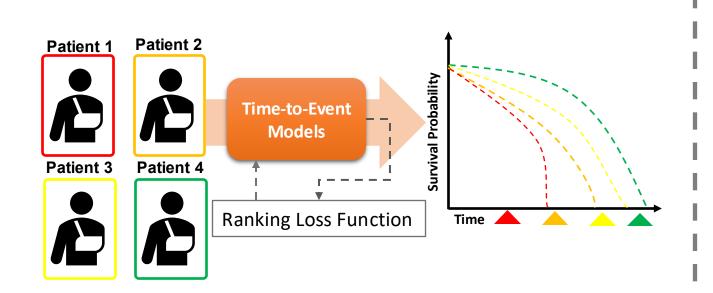
#### Challenges

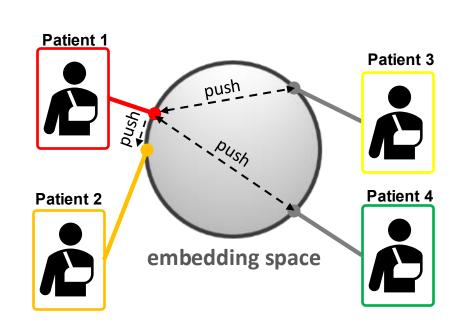
- Combining NLL with ranking loss enhances discrimination but compromises calibration, harming the clinical utility of predicted survival outcomes.
- Ranking loss directly modifies model outputs, potentially leading to misalignment with the actual risk distribution.
  - Typically based on exponential, log-sigmoid, or linear functions

| Model   | Ranking Loss                                                                                    |
|---------|-------------------------------------------------------------------------------------------------|
| DeepHit | $\exp(-(\hat{R}(\tau_i \mathbf{x}_i) - \hat{R}(\tau_i \mathbf{x}_j)/\boldsymbol{\kappa}))$      |
| DCS     | $\exp(-(\hat{S}(\tau_i   \mathbf{x_j}) - \hat{S}(\tau_i   \mathbf{x_i}) / \boldsymbol{\kappa})$ |
| LowerCI | $\log \sigma(\hat{R}(\tau_i   \mathbf{x_i}) - \hat{R}(\tau_i   \mathbf{x_j}))$                  |
| SSMTL   | $\hat{h}(\tau_i   \mathbf{x}_j) - \hat{h}(\tau_i   \mathbf{x}_i)$                               |

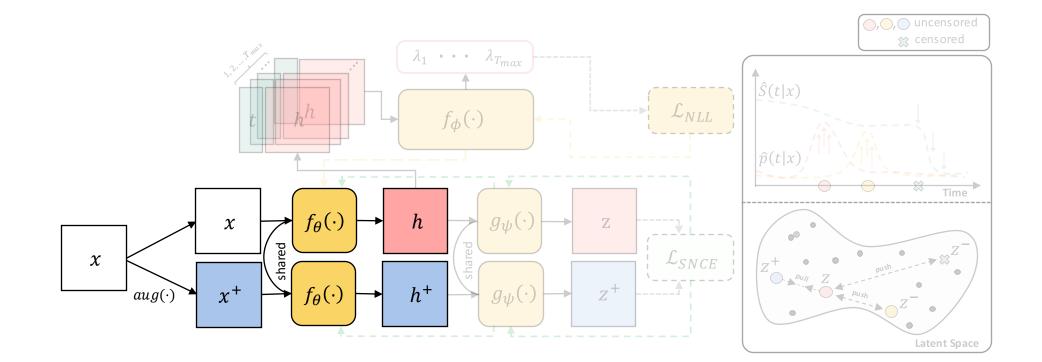
### **Motivation**

- Propose a novel contrastive learning approach for deep survival model
  - Differentiate each sample by their survival outcome, leveraging contrastive learning framework
  - Overcomes ranking loss limitations from directly comparing model outcome in the form of risk/survival function.

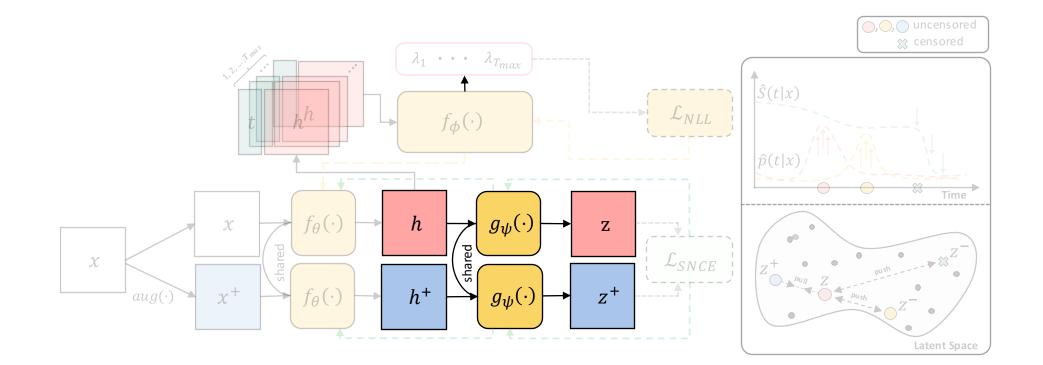




• **The encoder**,  $f_{\theta} : \mathcal{X} \to \mathcal{H}$ , takes features  $\mathbf{x} \in \mathcal{X}$  as input and outputs latent representation, i.e.,  $\mathbf{h} = f_{\theta}(\mathbf{x})$ .

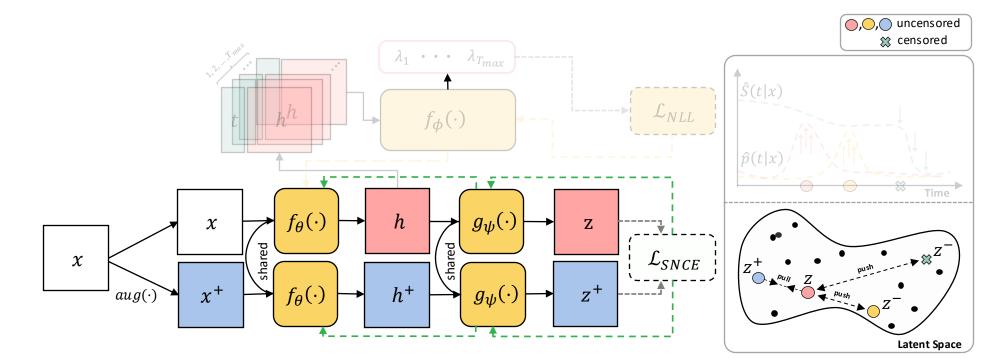


• The projection head.,  $g_{\psi} : \mathcal{H} \to \mathbb{R}^d$ , maps latent representation **h** to the embedding space where contrastive learning is applied, i.e.,  $\mathbf{z} = f_{\theta}(\mathbf{h})$ .



#### **o** Contrastive Learning Network

- By passing the original, positive, and negative samples through  $f = g_{\psi} \circ f_{\theta}$ , computing our survival outcome-based contrastive learning loss function  $\mathcal{L}_{SNCE}$ 



- Goal : Aligns with our inductive bias that patients with similar survival outcomes should share similar clinical status, which manifests through similar representations.
- Noise Contrastive Estimation (NCE)
  - To learn mapping  $f = g_{\psi} \circ f_{\theta}$  utilizing a positive sample  $\mathbf{x}^+ \sim p_{X^+}$ , and negative samples  $\mathbf{x}^- \sim q$

$$\mathbb{E}_{\substack{\mathbf{x} \sim p_{X} \\ \mathbf{x}^{+} \sim p_{X^{+}}}} \left[ -\log \frac{e^{s(\mathbf{x}, \mathbf{x}^{+})}}{M \cdot \mathbb{E}_{\mathbf{x}^{-} \sim q} \left[ e^{s(\mathbf{x}, \mathbf{x}^{-})} \right]} \right]$$

- *M* : scaling term which is set to the batch size,  $s(\mathbf{x}, \mathbf{x}') = \frac{f(\mathbf{x})^T f(\mathbf{x}')}{||f(\mathbf{x})|| \cdot ||f(\mathbf{x}')||}$ 

- omit the corresponding temperature v and write  $e^{s(\mathbf{x}, \mathbf{x}^{-})}$  to denote  $e^{s(\mathbf{x}, \mathbf{x}^{-})/v}$ 

- Key aspect of NCE : selecting negative samples to differentiate the anchor sample
- To reflect the difference in the time-to-events in the embedding space, we design a novel distribution q by utilizing the available information from survival outcomes.

- To accurately distinguish patients based on their time-to-event outcomes, we fully utilize the time-to-event information
- Hence, given an anchor  $(\mathbf{x}, \tau)$  and a negative  $(\mathbf{x}^-; \tau^-)$ , we define the weight function,  $\sigma > 0$  is a temperature coefficient.
  - This function is a variant of the Laplacian Kernel, which assigns larger weights to samples with large differences in time-to-event outcomes, and smaller weights to samples with small differences

$$w(\tau^{-};\tau) = 1 - e^{|\tau - \tau^{-}|/\sigma}$$

- Designing *q* based on the following inductive bias : similar patients are more likely to experience the event at similar time points than the ones who are not.
- We will slightly abuse the notation  $w(\mathbf{x}^-; \mathbf{x})$  to denote  $w(\tau^-; \tau)$

$$q(\mathbf{x}^-; \mathbf{x}) = \frac{1}{Z} w(\mathbf{x}^-; \mathbf{x}) p(\mathbf{x}^-)$$

*normalizing constant*  $Z = \frac{1}{M} \sum_{j=1}^{M} w(x_j^{-}; x)$ 

Importance sampling using survival outcomes

$$E_{x^{-} \sim q} \left[ e^{s(x,x^{-})} \right] = E_{x^{-} \sim p} \left[ \left( \frac{q(x^{-};x)}{p(x^{-})} \right) \cdot e^{s(x,x^{-})} \right]$$

$$= E_{x^{-} \sim p} \left[ \left( \frac{w(x^{-};x)}{Z} \right) \cdot e^{s(x,x^{-})} \right]$$

$$\approx \frac{1}{Z \cdot M} \sum_{j=1}^{M} w(x_j^-; x) \cdot e^{s(x,x_j^-)}$$

*normalizing constant*  $Z = \frac{1}{M} \sum_{j=1}^{M} w(x_j^{-}; x)$ 

• Survival outcome-aware NCE (SNCE) loss

$$\mathcal{L}_{SNCE} = \sum_{i=1}^{N} \left[ -\log\left(\frac{e^{s(x_i, x_i^+)}}{\frac{1}{Z}\sum_{j=1}^{M} w(x_j^-; x_i) \cdot e^{s(x_i, x_j^-)}}\right) \right]$$

#### case 1 : Both samples are uncensored(i.e., have observed events)

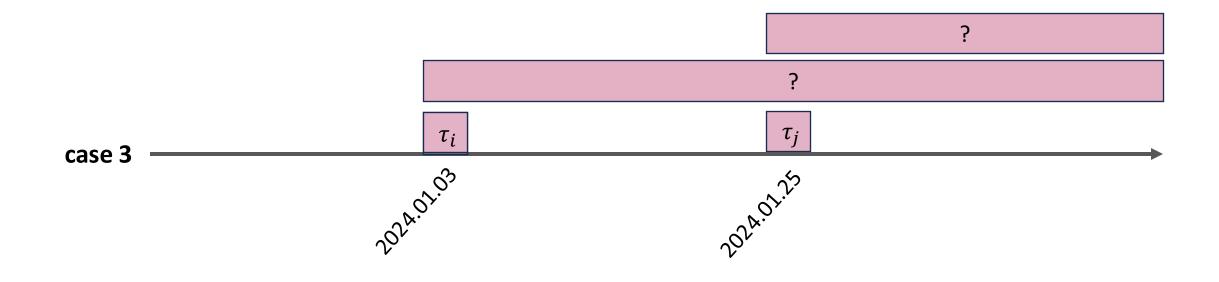
- o case 2 : Both samples are censored
- o case 3 : One is uncensored and the other is censored.



#### case 1 : Both samples are uncensored(i.e., have observed events)

o case 2 : Both samples are censored

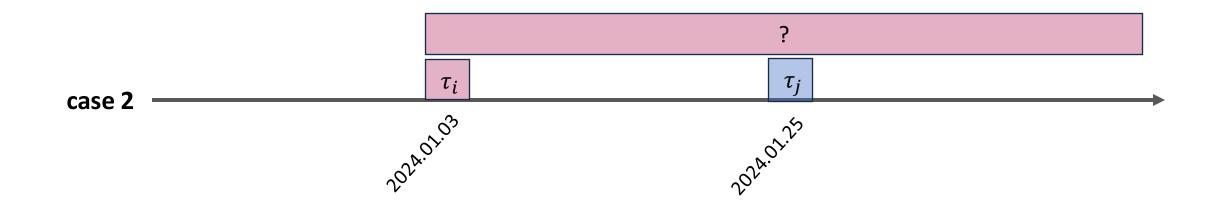
o case 3 : One is uncensored and the other is censored.



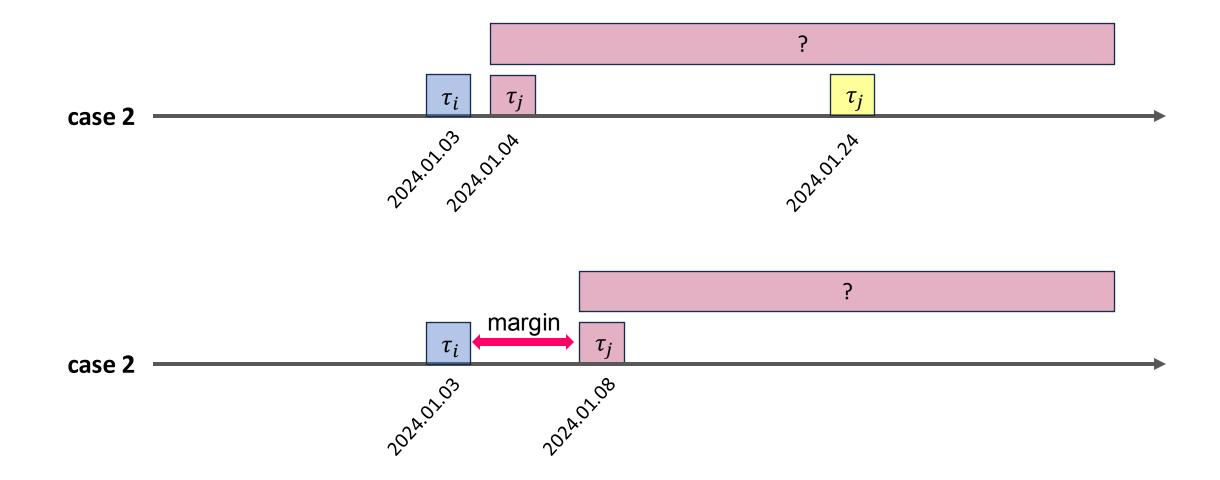
- o case 1 : Both samples are uncensored(i.e., have observed events)
- o case 2 : Both samples are censored
- o case 3 : One is uncensored and the other is censored.



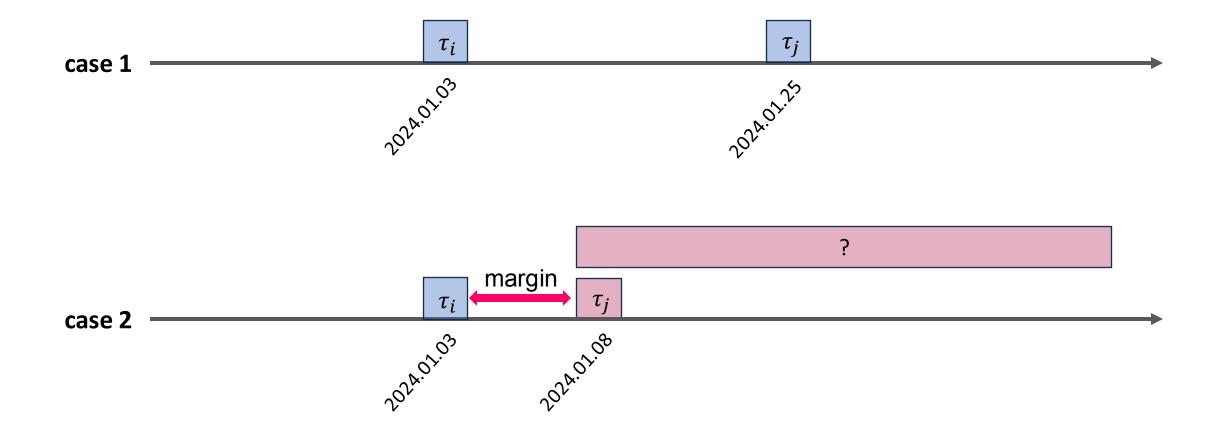
- o case 1 : Both samples are uncensored(i.e., have observed events)
- o case 2 : Both samples are censored
- o case 3 : One is uncensored and the other is censored.



o case 3 : One is uncensored and the other is censored.



• Redefine the weight function considering the right-censoring as



• The hazard network.,  $f_{\phi} : \mathcal{H} \times \mathcal{T} \to [0,1]$ , predicts the hazard rate at each time point  $t \in \mathcal{T}$  given input latent representation **h**, i.e.,  $\hat{\lambda}(t|\mathbf{x}) = f_{\phi}(\mathbf{h}, t) = f_{\phi}(f_{\theta}(\mathbf{x}), t)$ 



#### **Important quantities : Hazard function**

• The hazard function,  $\lambda(t)$ , is the instantaneous rate of failure at time t, given that an individual has survived until at least time t:

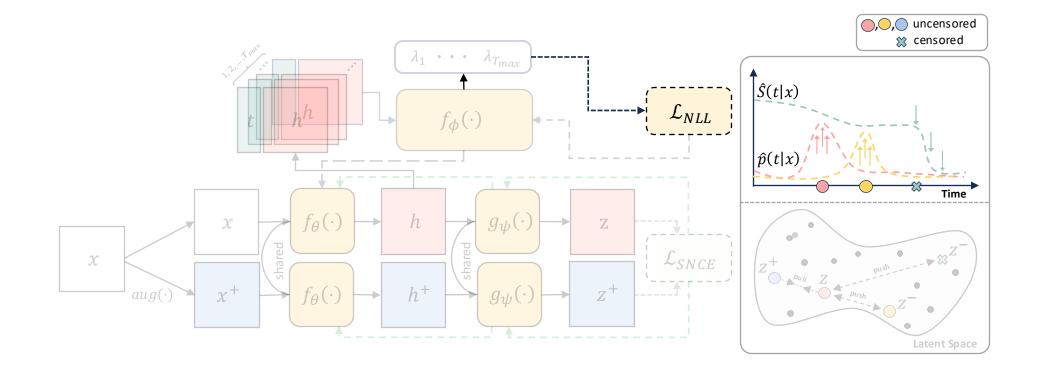
$$\lambda(t|\mathbf{x}) = P(T = t|T \ge t, \mathbf{x}) \quad t \in \{1, 2, \dots\}$$

• There is an important relationship between the survival and hazard functions:

$$S(t|\mathbf{x}) = P(T > t | \mathbf{x})$$
  
=  $P(T \neq 1 | \mathbf{x}) \cdot P(T \neq 2 | T > 1, \mathbf{x}) \cdots P(T = t | T > t - 1, \mathbf{x})$   
=  $P(1 - \lambda(1 | \mathbf{x})) \cdot P(1 - \lambda(2 | \mathbf{x})) \cdot \cdots \cdot P(1 - \lambda(t | \mathbf{x}))$   
=  $\prod_{t' \leq t} (1 - \lambda(t'|\mathbf{x}))$ 

#### • Negative Log-likelihood

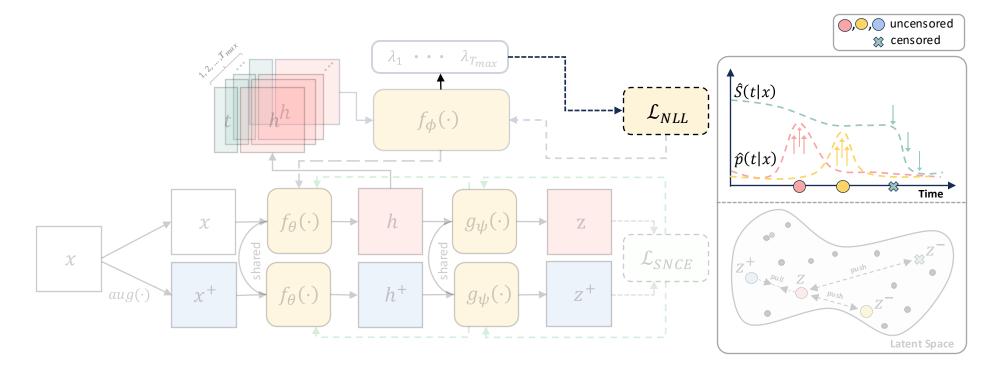
 Hazard estimate is defined as a function of time given an input feature, we can naturally model the time-varying effect of input features on risk/survival functions.



#### • Negative Log-likelihood

- Then, compute  $\mathcal{L}_{NLL}^{\theta,\phi}$  by plugging in  $f_{\phi}(f_{\theta}(\mathbf{x}), t)$  into  $\hat{p}$  and  $\hat{S}$ 

 $- \hat{p}(\tau | \mathbf{x}) = f_{\phi}(f_{\theta}(\mathbf{x}), \tau) \prod_{t' \leq \tau - 1} \left( 1 - f_{\phi}(f_{\theta}(\mathbf{x}), t') \right), \quad \hat{S}(\tau | \mathbf{x}) = \prod_{t' \leq \tau} \left( 1 - f_{\phi}(f_{\theta}(\mathbf{x}), t') \right)$ 



• Overall, we can estimate the hazard function by training ConSurv with a loss function that combines the NLL loss and the SNCE loss, where  $\beta$  is a balancing coefficient

$$\mathcal{L}_{Total}^{\theta,\phi,\psi} = \mathcal{L}_{NLL}^{\theta,\phi} + \beta \mathcal{L}_{SNCE}^{\theta,\psi}$$

## **Experiments Setup : Datasets & Benchmarks & Metrics**

#### • Datasets

| Dataset  | No.<br>Uncensored | No.<br>Censored | No. Features<br>(Real, Binary, Category) |
|----------|-------------------|-----------------|------------------------------------------|
| METABRIC | 888 (55.2%)       | 1093 (44.8%)    | 21 (6, 0, 15)                            |
| NWTCO    | 571 (14.2%)       | 3457 (85.5%)    | 6 ( 1, 4, 1)                             |
| GBSG     | 1267 (56.8%)      | 965 (43.2%)     | 7 ( 4, 2, 1)                             |
| FLCHAIN  | 4562 (69.9%)      | 1962 (30.3%)    | 8 (4, 2, 2)                              |
| SUPPORT  | 6036 (68.1%)      | 2837 (31.9%)    | 14 ( 8, 3, 3)                            |
| SEER     | 604 (1.11%)       | 53940 (98.9%)   | 12 (4, 5, 3)                             |

#### **o Benchmarks**

| Loss Function          | Туре | Model    |
|------------------------|------|----------|
| Partial Log-likelihood | ML   | CoxPH    |
| Fartial Log-likelihood | DL   | DeepSurv |
| Ranking Loss           | DL   | DeepHit  |
|                        | DL   | DRSA     |
| Collibration Loop      | DL   | DCS      |
| Calibration Loss       | DL   | X-CAL    |

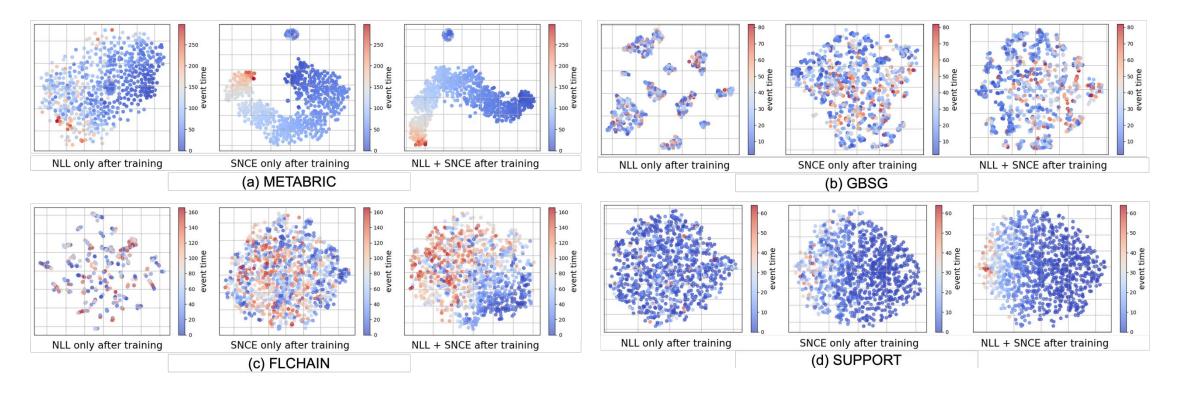
#### • Metrics

| Evaluation Metric                             | Туре           | Range         |   |
|-----------------------------------------------|----------------|---------------|---|
| Concordance Index (CI)                        | Discrimination | 0.000 ~ 1.000 | ſ |
| Integrated Brier Score (IBS)                  | Calibration    | 0.000 ~ 1.000 | ↓ |
| Distribution Divergence for Calibration (DDC) | Calibration    | 0.000 ~ 1.000 | ↓ |
| D-calibration (D-CAL)                         | Calibration    | P-value>0.05  | × |

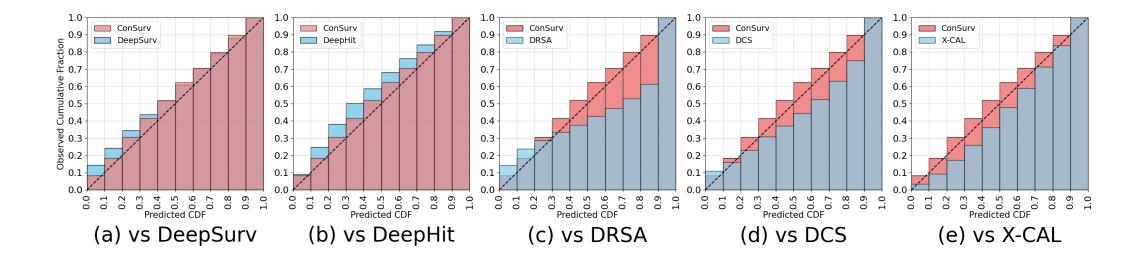
|                                                                                                 |                                                                                                                                         | МЕТАВ                                                                                                                                                                       | BRIC                                                                                                                                                                                                                                             |                                          | NWTCO                                                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                        |                                         |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Метнор                                                                                          | CI↑                                                                                                                                     | IBS $\downarrow$                                                                                                                                                            | DDC $\downarrow$                                                                                                                                                                                                                                 | D-CAL                                    | CI ↑                                                                                                                                                                                                                         | IBS $\downarrow$                                                                                                                                                | $DDC\downarrow$                                                                                                                                                        | D-CAL                                   |
| CoxPH<br>DeepSurv<br>DeepHit<br>DRSA<br>DCS<br>X-CAL                                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                  | $\begin{array}{c} \textbf{0.175}_{\pm \textbf{0.028}} \\ 0.183_{\pm 0.029} \\ 0.204_{\pm 0.018} \\ 0.249_{\pm 0.038} \\ 0.206_{\pm 0.043} \\ 0.182_{\pm 0.023} \end{array}$ | $\begin{array}{c} 0.111 {\scriptstyle \pm 0.024} \\ 0.103 {\scriptstyle \pm 0.026} \\ 0.292 {\scriptstyle \pm 0.017} \\ 0.178 {\scriptstyle \pm 0.060} \\ \textbf{0.054} {\scriptstyle \pm 0.039} \\ 0.065 {\scriptstyle \pm 0.037} \end{array}$ | 25<br>25<br>0<br>0<br>2<br>2             | $\begin{array}{c} 0.716 _{\pm 0.025} \\ 0.640 _{\pm 0.080} \\ 0.717 _{\pm 0.028} \\ 0.709 _{\pm 0.019} \\ 0.642 _{\pm 0.036} \\ 0.622 _{\pm 0.037} \end{array}$                                                              | $\begin{array}{c} 0.108 _{\pm 0.008} \\ 0.117 _{\pm 0.011} \\ 0.143 _{\pm 0.024} \\ 0.281 _{\pm 0.041} \\ 0.119 _{\pm 0.018} \\ 0.128 _{\pm 0.025} \end{array}$ | $\begin{array}{c} 0.515_{\pm 0.022} \\ 0.792_{\pm 0.011} \\ 0.657_{\pm 0.024} \\ 0.218_{\pm 0.065} \\ 0.209_{\pm 0.043} \\ \textbf{0.191}_{\pm 0.079} \end{array}$     | 25<br>24<br>12<br>0<br>19<br>12         |
| L <sub>NLL</sub><br>L <sub>NLL</sub> & L <sub>NCE</sub><br>L <sub>NLL</sub> & L <sub>Rank</sub> | $ \begin{vmatrix} 0.642_{\pm 0.022} \\ 0.659_{\pm 0.020} \\ 0.652_{\pm 0.022} \end{vmatrix} $                                           | $\begin{array}{c} 0.197 _{\pm 0.030} \\ 0.193 _{\pm 0.029} \\ 0.247 _{\pm 0.030} \end{array}$                                                                               | $\begin{array}{c} 0.077_{\pm 0.020} \\ 0.080_{\pm 0.022} \\ 0.177_{\pm 0.020} \end{array}$                                                                                                                                                       | 13<br>21<br>0                            | $\begin{array}{c} 0.707_{\pm 0.024} \\ 0.715_{\pm 0.024} \\ 0.717_{\pm 0.027} \end{array}$                                                                                                                                   | $\begin{array}{c} 0.109_{\pm 0.008} \\ 0.108_{\pm 0.009} \\ 0.137_{\pm 0.008} \end{array}$                                                                      | $\begin{array}{c} 0.556 _{\pm 0.041} \\ 0.563 _{\pm 0.054} \\ 0.653 _{\pm 0.050} \end{array}$                                                                          | 23<br>22<br>0                           |
| CONSURV                                                                                         | $0.665_{\pm 0.023}$                                                                                                                     | $0.186_{\pm 0.021}$                                                                                                                                                         | $0.110_{\pm 0.024}$                                                                                                                                                                                                                              | 23                                       | $\textbf{0.718}_{\pm 0.025}$                                                                                                                                                                                                 | $\textbf{0.107}_{\pm 0.008}$                                                                                                                                    | $0.554_{\pm 0.045}$                                                                                                                                                    | 24                                      |
|                                                                                                 | SUPPORT                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                  |                                          | SEER                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                        |                                         |
|                                                                                                 |                                                                                                                                         | SUPPO                                                                                                                                                                       | ORT                                                                                                                                                                                                                                              |                                          |                                                                                                                                                                                                                              | SEE                                                                                                                                                             | R                                                                                                                                                                      |                                         |
| Метнор                                                                                          | CI↑                                                                                                                                     | SUPPC<br>IBS↓                                                                                                                                                               | DRT<br>DDC↓                                                                                                                                                                                                                                      | D-CAL                                    | CI↑                                                                                                                                                                                                                          | SEE<br>IBS↓                                                                                                                                                     | R<br>DDC↓                                                                                                                                                              | D-CAL                                   |
| METHOD<br>CoxPH<br>DeepSurv<br>DeepHit<br>DRSA<br>DCS<br>X-CAL                                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                                                                                  | D-CAL<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\begin{array}{c} CI\uparrow\\ 0.858{\scriptstyle\pm0.018}\\ 0.814{\scriptstyle\pm0.020}\\ 0.840{\scriptstyle\pm0.033}\\ 0.834{\scriptstyle\pm0.078}\\ 0.860{\scriptstyle\pm0.020}\\ 0.837{\scriptstyle\pm0.040}\end{array}$ |                                                                                                                                                                 |                                                                                                                                                                        | D-CAL<br>25<br>25<br>0<br>0<br>21<br>18 |
| CoxPH<br>DeepSurv<br>DeepHit<br>DRSA<br>DCS                                                     | $ \begin{vmatrix} 0.604_{\pm 0.006} \\ 0.603_{\pm 0.090} \\ 0.503_{\pm 0.009} \\ 0.570_{\pm 0.009} \\ 0.598_{\pm 0.008} \end{vmatrix} $ | $\begin{array}{c} \text{IBS} \downarrow \\ 0.191_{\pm 0.005} \\ 0.192_{\pm 0.007} \\ 0.272_{\pm 0.003} \\ 0.259_{\pm 0.015} \\ 0.207_{\pm 0.012} \end{array}$               | $\begin{array}{c} \text{DDC}\downarrow\\ 0.262_{\pm0.013}\\ 0.245_{\pm0.036}\\ 0.337_{\pm0.006}\\ 0.486_{\pm0.084}\\ 0.175_{\pm0.032}\end{array}$                                                                                                | 0<br>0<br>0<br>0<br>0                    | $\begin{array}{c} 0.858 _{\pm 0.018} \\ 0.814 _{\pm 0.020} \\ 0.840 _{\pm 0.033} \\ 0.834 _{\pm 0.078} \\ 0.860 _{\pm 0.020} \end{array}$                                                                                    | $IBS \downarrow \\ 0.009_{\pm 0.005} \\ 0.010_{\pm 0.000} \\ 0.020_{\pm 0.001} \\ 0.021_{\pm 0.015} \\ 0.010_{\pm 0.001}$                                       | $\begin{array}{c} \text{DDC} \downarrow \\ 0.966_{\pm 0.003} \\ 1.000_{\pm 0.000} \\ 0.836_{\pm 0.003} \\ \textbf{0.671}_{\pm 0.135} \\ 0.911_{\pm 0.044} \end{array}$ | 25<br>25<br>0<br>0<br>21                |

|                                                                                                             |                                                        | МЕТАВ                                                                                                                                                         | RIC                                                                                                                                               |                                          | NWTCO                                                                                                                                     |                                                                                                                                                |                                                                                                                                                                        |                                         |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Метнор                                                                                                      | CI ↑                                                   | IBS $\downarrow$                                                                                                                                              | $DDC\downarrow$                                                                                                                                   | D-CAL                                    | CI ↑                                                                                                                                      | IBS $\downarrow$                                                                                                                               | $DDC\downarrow$                                                                                                                                                        | D-CAL                                   |
| CoxPH<br>DeepSurv<br>DeepHit<br>DRSA<br>DCS                                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c} \textbf{0.175}_{\pm \textbf{0.028}} \\ 0.183_{\pm 0.029} \\ 0.204_{\pm 0.018} \\ 0.249_{\pm 0.038} \\ 0.206_{\pm 0.043} \end{array}$        | $\begin{array}{c} 0.111_{\pm 0.024} \\ 0.103_{\pm 0.026} \\ 0.292_{\pm 0.017} \\ 0.178_{\pm 0.060} \\ \textbf{0.054}_{\pm 0.039} \end{array}$     | 25<br>25<br>0<br>0<br>2                  | $\begin{array}{c} 0.716 _{\pm 0.025} \\ 0.640 _{\pm 0.080} \\ 0.717 _{\pm 0.028} \\ 0.709 _{\pm 0.019} \\ 0.642 _{\pm 0.036} \end{array}$ | $\begin{array}{c} 0.108_{\pm 0.008}\\ 0.117_{\pm 0.011}\\ 0.143_{\pm 0.024}\\ 0.281_{\pm 0.041}\\ 0.119_{\pm 0.018}\end{array}$                | $\begin{array}{c} 0.515_{\pm 0.022} \\ 0.792_{\pm 0.011} \\ 0.657_{\pm 0.024} \\ 0.218_{\pm 0.065} \\ 0.209_{\pm 0.043} \end{array}$                                   | <b>25</b><br>24<br>12<br>0<br>19        |
| X-CAL                                                                                                       | $0.632_{\pm 0.027}$                                    | $0.182_{\pm 0.023}$                                                                                                                                           | $0.065_{\pm 0.037}$                                                                                                                               | 2                                        | $0.642 \pm 0.036$<br>$0.622 \pm 0.037$                                                                                                    | $0.119 \pm 0.018 \\ 0.128 \pm 0.025$                                                                                                           | $0.191_{\pm 0.079}$                                                                                                                                                    | 12                                      |
| $egin{array}{c} \mathcal{L}_{NLL} & \mathcal{L}_{NCE} \ \mathcal{L}_{NLL} & \mathcal{L}_{Rank} \end{array}$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c} 0.197_{\pm 0.030} \\ 0.193_{\pm 0.029} \\ 0.247_{\pm 0.030} \end{array}$                                                                    | $\begin{array}{c} 0.077_{\pm 0.020} \\ 0.080_{\pm 0.022} \\ 0.177_{\pm 0.020} \end{array}$                                                        | 13<br>21<br>0                            | $\begin{array}{c} 0.707_{\pm 0.024} \\ 0.715_{\pm 0.024} \\ 0.717_{\pm 0.027} \end{array}$                                                | $\begin{array}{c} 0.109_{\pm 0.008} \\ 0.108_{\pm 0.009} \\ 0.137_{\pm 0.008} \end{array}$                                                     | $\begin{array}{c} 0.556_{\pm 0.041} \\ 0.563_{\pm 0.054} \\ 0.653_{\pm 0.050} \end{array}$                                                                             | 23<br>22<br>0                           |
| CONSURV                                                                                                     | $0.665_{\pm 0.023}$                                    | $0.186_{\pm 0.021}$                                                                                                                                           | $0.110_{\pm 0.024}$                                                                                                                               | 23                                       | $0.718 \scriptstyle \pm 0.025$                                                                                                            | $0.107 \scriptstyle \pm 0.008$                                                                                                                 | $0.554_{\pm 0.045}$                                                                                                                                                    | 24                                      |
|                                                                                                             |                                                        |                                                                                                                                                               |                                                                                                                                                   |                                          |                                                                                                                                           |                                                                                                                                                |                                                                                                                                                                        |                                         |
|                                                                                                             |                                                        | SUPPO                                                                                                                                                         | ORT                                                                                                                                               |                                          |                                                                                                                                           | SEE                                                                                                                                            | R                                                                                                                                                                      |                                         |
| Метнор                                                                                                      | CI↑                                                    | SUPPC<br>IBS↓                                                                                                                                                 | DRT<br>DDC↓                                                                                                                                       | D-CAL                                    | CI↑                                                                                                                                       | SEE<br>IBS↓                                                                                                                                    | R<br>DDC↓                                                                                                                                                              | D-CAL                                   |
| METHOD<br>CoxPH<br>DEEPSURV<br>DEEPHIT<br>DRSA<br>DCS<br>X-CAL                                              | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                                                                                                               |                                                                                                                                                   | D-CAL<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                    |                                                                                                                                                |                                                                                                                                                                        | D-CAL<br>25<br>25<br>0<br>0<br>21<br>18 |
| CoxPH<br>DeepSurv<br>DeepHit<br>DRSA<br>DCS                                                                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c} \text{IBS} \downarrow \\ 0.191_{\pm 0.005} \\ 0.192_{\pm 0.007} \\ 0.272_{\pm 0.003} \\ 0.259_{\pm 0.015} \\ 0.207_{\pm 0.012} \end{array}$ | $\begin{array}{c} \text{DDC}\downarrow\\ 0.262_{\pm0.013}\\ 0.245_{\pm0.036}\\ 0.337_{\pm0.006}\\ 0.486_{\pm0.084}\\ 0.175_{\pm0.032}\end{array}$ | 0<br>0<br>0<br>0<br>0                    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                    | $IBS \downarrow \\ 0.009_{\pm 0.005} \\ 0.010_{\pm 0.000} \\ 0.020_{\pm 0.001} \\ 0.021_{\pm 0.015} \\ 0.010_{\pm 0.001} \\ 0.010_{\pm 0.001}$ | $\begin{array}{c} \text{DDC} \downarrow \\ 0.966_{\pm 0.003} \\ 1.000_{\pm 0.000} \\ 0.836_{\pm 0.003} \\ \textbf{0.671}_{\pm 0.135} \\ 0.911_{\pm 0.044} \end{array}$ | <b>25</b><br><b>25</b><br>0<br>0<br>21  |

- o Effect of Contrastive Learning
  - $\mathcal{L}_{NLL}$  only,  $\mathcal{L}_{SNCE}$  only, and ConSurv (i.e.,  $\mathcal{L}_{NLL} \& \mathcal{L}_{SNCE}$ )
  - significantly improves the alignment of representations with event time information



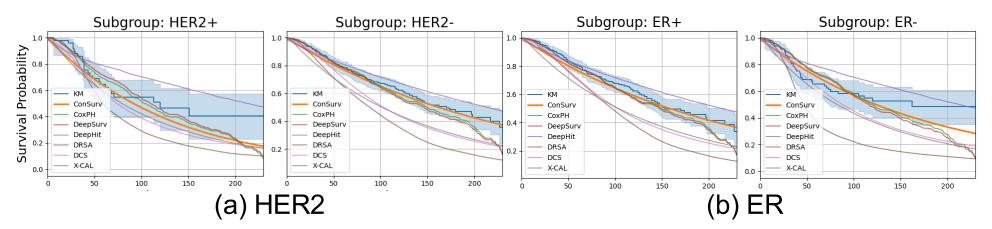
- Comparing calibration plot of ConSurv with the DL-based survival models
  - The x=y line represents the ideal state where predicted probabilities perfectly match the observed outcome

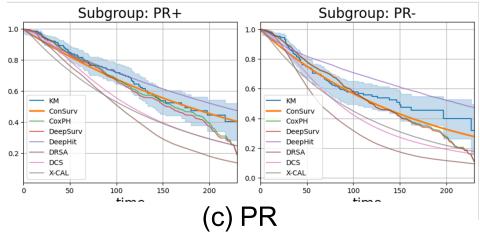


#### Subgroup Analysis

- To confirm the calibration performance of survival models, compare their survival plots with the Kaplan-Meier (KM) curve
- KM curve provides a non-parametric estimate of survival function at population level
- Examine three binary hormone receptor status in the METABRIC dataset: estrogen receptor (ER) ,human epidermal growth factor receptor 2 (HER2), and progesterone receptor (PR)

#### • Subgroup Analysis





#### • Subgroup Analysis

 To quantitatively assess calibration performance, compare the survival predictions of each model with the KM curves for each subgroup using the Wasserstein distance

| Subgroup | ER    |       | HER2  |       | Size  |       | PR    |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | +     | -     | +     | -     | +     | -     | +     | -     |
| CoxPH    | 0.030 | 0.108 | 0.063 | 0.089 | 0.049 | 0.067 | 0.076 | 0.044 |
| DeepSurv | 0.033 | 0.115 | 0.066 | 0.101 | 0.054 | 0.074 | 0.105 | 0.089 |
| DeepHit  | 0.063 | 0.082 | 0.146 | 0.156 | 0.043 | 0.102 | 0.233 | 0.033 |
| DRSA     | 0.181 | 0.293 | 0.233 | 0.328 | 0.205 | 0.276 | 0.118 | 0.234 |
| DCS      | 0.130 | 0.146 | 0.087 | 0.178 | 0.154 | 0.126 | 0.091 | 0.124 |
| X-CAL    | 0.136 | 0.165 | 0.105 | 0.180 | 0.159 | 0.148 | 0.060 | 0.176 |
| ConSurv  | 0.024 | 0.077 | 0.044 | 0.089 | 0.043 | 0.042 | 0.060 | 0.025 |

- Survival data often lacks clear event times complicating learning due to censored data.
  - Potential avenues include modifying models to account for uncertainties or developing alternative learning approaches
  - Need for new evaluation metrics that consider the characteristics
- Limited augmentation techniques in tabular data reduce model robustness
  - Explore augmentation methods suitable for survival datasets to enhance contrastive learning performance

#### Thank you