

State Space Models on Temporal Graphs: A First-Principles Study

Jintang Li, Xinzhou Jin, Liang Chen, Zibin Zheng, Sun Yat-sen University Ruofan Wu, Boqun Ma, Coupang

BACKGROUND GRAPHS & GRAPH NEURAL NETWORKS

Networks are everywhere - Graphs are natural way to model such networks

Social Networks

Financial transactions

Protein-Protein Interaction Networks

Graphs are often dynamic - nodes, edges, and attributes may evolve constantly over time

GNNs developed for static graphs are not directly applicable for temporal graphs

Generalize GNNs to temporal graphs by additionally considering the time dimension.

Time

Generalize GNNs to temporal graphs by additionally considering the time dimension.

From RNNs, SNNs, Transformers, to SSMs

	RNNs [46, 4, 18]	SNNs [38, 8]	Transformers [42]	SSMs (S6 [10])
Training	Slow	Slow	Fast	Fast
Inference	Fast	Fast	Slow	Fast
Para. Size	Medium	Extremely small	Large	Small
Performance	አአአ	***	ራራራራ	አአአአ
Limitations	Forgetting	Vanishing gradients	Mem. & Time: $O(n^2)$?

MOTIVATION SPIKE-BASED GRAPH NEURAL NETWORKS

GraphSSM: Modeling temporal graph dynamics with SSMs

GHiPPO: HiPPO on Temporal Graphs

Laplacian-regularized online approximation

HiPPO term

$$\mathcal{L}_t(Z;G,X,\mu) = \int_0^t ||X(s) - Z(s)||_2^2 d\mu_t(s) + \alpha \int_0^t Z(s)^\top L(s) Z(s) d\mu_t s.$$

Graph memory projection operator

$$\mathrm{GPROJ}_t(G,X) = rgmin_{Z:z_v \in \mathcal{P}_N orall v \in V} \mathcal{L}_t(Z;G,X,\mu).$$

Mixed Discretization for Unobserved Graph Mutations

- Ordinary ZOH:Feature Mixing:Representation Mixing:
- $egin{aligned} \widehat{X}_l^{(\mathrm{O})} &= \mathrm{GNN}_{ heta}\left(X_l,G_l
 ight) \ \widehat{X}_l^{(\mathrm{F})} &= \mathrm{GNN}_{ heta}\left(\mathrm{Mix}_{\phi}\left(X_{l-1},X_l
 ight),G_l
 ight) \ \widehat{X}_l^{(\mathrm{R})} &= \mathrm{Mix}_{\phi}\left(\mathrm{GNN}_{ heta}\left(X_{l-1},G_{l-1}
 ight),\mathrm{GNN}_{ heta}\left(X_l,G_l
 ight) \end{aligned}$

GraphSSM Framework

$$H_{1:L}^{(k)} = \sigma\left(ext{SSMLayer}\left(H_{1:L}^{(k-1)},G_{1:L}
ight)
ight) + ext{Linear}\left(H_{1:L}^{(k-1)}
ight), 1 \leq k \leq K,$$

GraphSSM-S4: Single-Input, Single-Output (SISO) configuration
 GraphSSM-S5: Multiple-Input, Multiple-Output (MIMO) configuration
 GraphSSM-S6: input-controlled time intervals and state matrices (Δ, B, C)

GraphSSM: Overall framework

Backbone: Graph Neural Networks GCN, GraphSAGE, GAT □Sequence Model: State Space Models □ S4, S5, S6 (Mamba) Mixed Discretization Unobserved graph mutations □ Feature mixing Representation mixing

EXPERIMENTS SETTINGS

4K 577K		DBLP-3	Brain	Reddit	DBLP-10	arXiv	Tmall	
Datasets: DBLP3, Brain, Reddit, DBLP-10, arXiv, Tmall	#Nodes #Edges	4,257	5,000	8,291	28,085	169,343	577,314	
Dataset splits: 8/2 for training/test	#Features #Classes	100	20 10	204,050 20 4	128 10	128 40	128 5	
Comparison methods:	#Time Steps Category	10 Citation	12 Biology	10 Society	27 Citation	35 Citation	186 E-commerce	
Static methods: DeepWalk & Node2Vec	TC _{structure} TC _{feature}	0.139 0.468	0.024 0.070	0.030 0.556	0.823 0.823	0.580 1.000	0.811 0.712	
		Table: The statistics of datasets						
Dynamic methods: HTNE, MMDNE, DynamicTriad,								
MPNN, STAR, EvolveGCN, SpikeNet & ROLAND	$\mathrm{TC}_{\mathrm{structure}} = rac{1}{L-1}\sum_{l}\sum_{l}rac{\mathcal{E}_{l}\cap\mathcal{E}_{l+1}}{\mathcal{E}_{l}\cup\mathcal{E}_{l+1}},$							
Metrics: Micro-F1 & Macro-F1			$\mathrm{TC}_{\mathrm{feature}} = \frac{1}{I}$	$\frac{1}{L-1}\sum_{i=1}^{L-1}\mathbf{S}$	$\operatorname{Sim}(X_l, X_{l+1})$),		
Task: Temporal Node Classification ? ?	?		where Sim	(X_l, X_{l+1})	$) = \frac{1}{N_V} \sum_{v \in V} \frac{1}{v}$	$\frac{\langle x_{l,v}, x_{l+1,v}}{\ x_{l,v}\ \ x_{l+1,v}\ }$	$\frac{\langle \rangle}{v \parallel}$.	

?

 \bullet t_n

 $t_0 \longrightarrow$

EXPERIMENTS TEMPORAL NODE CLASSIFICATION

	DBLP-3		Br	ain	Re	ddit	DBLP-10	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
DeepWalk [36] Node2Vec [9]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 47.21_{\pm 0.2} \\ 48.42_{\pm 0.4} \end{array}$	$\begin{array}{c} 51.45_{\pm 0.6} \\ 53.51_{\pm 0.5} \end{array}$	$\begin{array}{c} 51.03_{\pm 0.8} \\ 52.95_{\pm 0.6} \end{array}$	$\begin{array}{c} 26.82_{\pm 0.6} \\ 25.47_{\pm 0.6} \end{array}$	$26.75_{\pm 0.4}\\25.44_{\pm 0.5}$	66.38 67.31	67.12 66.93
HTNE [54] M ² DNE [28] DynamicTriad [50]	$\begin{array}{ } 48.98_{\pm 0.2} \\ 49.12_{\pm 0.5} \\ 48.78_{\pm 0.5} \end{array}$	$\begin{array}{c} 48.74_{\pm 0.3} \\ 48.87_{\pm 0.4} \\ 48.63_{\pm 0.6} \end{array}$	$\begin{array}{c} 22.31_{\pm 0.8} \\ 23.79_{\pm 0.5} \\ 21.71_{\pm 0.7} \end{array}$	$\begin{array}{c} 22.12_{\pm 0.5} \\ 23.54_{\pm 0.6} \\ 21.94_{\pm 0.7} \end{array}$	$\begin{array}{c} 26.96_{\pm 0.5} \\ 25.79_{\pm 0.6} \\ 28.76_{\pm 0.5} \end{array}$	$\begin{array}{c} 26.80_{\pm 0.7} \\ 25.61_{\pm 0.4} \\ 28.51_{\pm 0.5} \end{array}$	68.79 69.71 66.95	68.36 69.75 66.42
MPNN [32] STAR [47] tNodeEmbed [39] EvolveGCN [34] SpikeNet [25] ROLAND [48]	$ \begin{vmatrix} 81.78_{\pm 0.6} \\ 84.74_{\pm 1.0} \\ 84.51_{\pm 1.2} \\ 84.01_{\pm 1.5} \\ 83.92_{\pm 1.5} \\ 84.21_{\pm 1.4} \end{vmatrix} $	$\begin{array}{c} 81.46_{\pm 1.2} \\ \textbf{84.20}_{\pm 1.2} \\ 83.57_{\pm 1.1} \\ 83.12_{\pm 1.5} \\ 83.04_{\pm 1.1} \\ 84.06_{\pm 1.5} \end{array}$	$\begin{array}{c} 90.97_{\pm 1.4} \\ 92.08_{\pm 1.3} \\ \textbf{92.35}_{\pm 0.8} \\ 92.20_{\pm 1.3} \\ 92.00_{\pm 1.2} \\ 92.14_{\pm 1.2} \end{array}$	$\begin{array}{c} 91.01_{\pm 1.5} \\ 92.23_{\pm 1.3} \\ \textbf{92.30}_{\pm 1.0} \\ 92.00_{\pm 1.0} \\ 91.97_{\pm 1.2} \\ 91.85_{\pm 1.1} \end{array}$	$\begin{array}{c} 40.85_{\pm1.3}\\ 43.42_{\pm2.3}\\ 42.11_{\pm1.8}\\ 41.24_{\pm1.3}\\ 40.42_{\pm2.0}\\ \textbf{44.22}_{\pm2.2} \end{array}$	$\begin{array}{c} 40.64_{\pm 1.2} \\ 43.43_{\pm 2.4} \\ 42.06_{\pm 1.3} \\ 41.11_{\pm 1.5} \\ 40.20_{\pm 2.1} \\ \textbf{44.25}_{\pm 1.9} \end{array}$	$\begin{array}{c} 67.74_{\pm 0.3} \\ 72.98_{\pm 1.5} \\ 74.19_{\pm 1.8} \\ 71.32_{\pm 0.5} \\ 74.86_{\pm 0.5} \\ \textbf{75.01}_{\pm 1.1} \end{array}$	$\begin{array}{c} 65.05_{\pm 0.5} \\ 72.03_{\pm 1.2} \\ 74.23_{\pm 2.2} \\ 71.20_{\pm 0.7} \\ 74.65_{\pm 0.5} \\ \textbf{74.98}_{\pm 1.0} \end{array}$
GRAPHSSM	85.26 _{±0.9}	85.00 _{±1.3}	$93.52_{\pm 1.0}$	$93.54_{\pm 0.9}$	$49.21_{\pm0.5}$	$49.05_{\pm0.7}$	76.80 $_{\pm 0.3}$	$\textbf{76.00}_{\pm 0.4}$

Table: Temporal node classification performance.

GraphSSM achieves superior performance in the node classification task

NEURAL INFORMATION PROCESSING SYSTEMS

EXPERIMENTS TEMPORAL NODE CLASSIFICATION

	ar	Xiv	Tn	nall
	Micro-F1	Macro-F1	Micro-F1	Macro-F1
DeepWalk [36]	66.54 _{±0.3}	$43.01_{\pm 0.3}$	57.88	49.53
Node2Vec [9]	$67.71_{\pm 0.5}$	$43.69_{\pm0.4}$	60.66	54.58
HTNE [54]	$65.48_{\pm 0.3}$	42.25 ± 0.3	62.64	54.93
M ² DNE [28]	$66.91_{\pm 0.5}$	43.52 ± 0.6	64.65	58.47
DynamicTriad [50]	$61.10_{\pm0.2}$	$38.25_{\pm0.3}$	60.72	51.16
MPNN [32]	$ 64.68_{\pm 1.7}$	$41.22_{\pm 1.5}$	$58.07_{\pm 0.6}$	$50.27_{\pm 0.5}$
STAR [47]	OOM	OOM	OOM	OOM
tNodeEmbed [39]	OOM	OOM	OOM	OOM
EvolveGCN [34]	$65.17_{\pm 1.4}$	$43.01_{\pm 1.3}$	$61.77_{\pm 0.6}$	$55.78_{\pm 0.6}$
SpikeNet [25]	$66.69_{\pm 0.9}$	$43.96_{\pm 1.0}$	66.10 $_{\pm 0.3}$	$62.40_{\pm 0.6}$
ROLAND [48]	$68.27_{\pm 1.2}$	$48.01_{\pm 1.3}$	OOM	OOM
GRAPHSSM	70.67 ±0.7	$\textbf{49.97}_{\pm 0.5}$	66.29 $_{\pm 0.1}$	$62.57_{\pm 0.1}$

Table: Temporal node classification performance on large graphs.

GraphSSM scales to large and long-range temporal graphs

EXPERIMENTS ABLATION STUDY

	DBLP-3		Brain		Re	ddit	DBLP-10	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
GRAPHSSM-S4	85.26 _{±0.9}	$85.00_{\pm 1.3}$	93.52 _{±1.0}	$93.54_{\pm 0.9}$	$49.21_{\pm0.5}$	$49.05{\scriptstyle \pm 0.7}$	$\textbf{76.80}_{\pm 0.3}$	76.00 $_{\pm 0.4}$
GRAPHSSM-S5	$84.32_{\pm 1.5}$	$83.57_{\pm 1.9}$	$92.20_{\pm 0.6}$	$92.05_{\pm 0.7}$	$44.75_{\pm 0.4}$	$44.79_{\pm 0.4}$	$73.19_{\pm 0.6}$	$72.95_{\pm 0.4}$
GRAPHSSM-S6	85.74 $_{\pm 0.5}$	$85.23_{\pm 0.6}$	$93.80_{\pm 0.3}$	94.47 $_{\pm 0.6}$	$42.52_{\pm 0.9}$	$41.73_{\pm 1.1}$	$75.26_{\pm 0.3}$	74.81 $_{\pm 0.2}$

S4 is the best architecture for learning over temporal graph sequences

EXPERIMENTS ABLATION STUDY

 $\begin{array}{ll} \hline \textbf{Feature Mixing:} & \widehat{X}_{l}^{(\mathrm{F})} = \mathrm{GNN}_{\theta} \left(\mathrm{Mix}_{\phi} \left(X_{l-1}, X_{l} \right), G_{l} \right) \\ \hline \textbf{Representation Mixing:} & \widehat{X}_{l}^{(\mathrm{R})} = \mathrm{Mix}_{\phi} \left(\mathrm{GNN}_{\theta} \left(X_{l-1}, G_{l-1} \right), \mathrm{GNN}_{\theta} \left(X_{l}, G_{l} \right) \right) \end{array}$

	DBLP-3		Brain		Re	ddit	DBLP-10	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
$\widehat{X}_{1}^{(0)} + \widehat{X}_{2}^{(0)}$	84.51 _{±0.9}	$84.28_{\pm 0.9}$	$91.56_{\pm 1.1}$	$91.99_{\pm 0.7}$	$48.05_{\pm 2.8}$	$47.99_{\pm 3.0}$	$75.62_{\pm 0.5}$	$74.65_{\pm 0.6}$
$\widehat{X}_1^{(\mathrm{F})} + \widehat{X}_2^{(\mathrm{O})}$	$\textbf{85.12}_{\pm 0.5}$	$84.82_{\pm 0.3}$	$92.36_{\pm0.8}$	$92.54_{\pm 0.9}$	$\textbf{49.06}_{\pm 1.9}$	$49.06_{\pm 1.8}$	$\textbf{76.67}_{\pm 0.6}$	$\textbf{75.95}_{\pm 0.7}$
$\widehat{X}_1^{(R)} + \widehat{X}_2^{(O)}$	$84.98_{\pm 1.1}$	$84.79_{\pm 1.0}$	$\textbf{93.52}_{\pm 1.0}$	$93.54_{\pm 0.9}$	$49.21_{\pm0.5}$	$49.05_{\pm0.7}$	$\textbf{77.76}_{\pm 0.5}$	77.54 $_{\pm 0.6}$
$\widehat{X}_1^{(\mathrm{O})} + \widehat{X}_2^{(\mathrm{R})}$	$85.26_{\pm 0.9}$	$\textbf{85.00}_{\pm 1.3}$	$91.84_{\pm1.9}$	$91.88_{\pm1.7}$	$47.88_{\pm1.8}$	$47.94_{\pm1.8}$	$75.41_{\pm0.7}$	$74.89_{\pm 1.0}$

Feature mixing generally leads to enhanced model performance

CONCLUSION

- 1. GHiPPO abstraction, a novel construct predicated on the objective of Laplacian regularized online function approximation
- 2. GraphSSM, a flexible state space framework designed for temporal graphs, addressing the key algorithmic challenge of unobserved graph mutations
- 3. GraphSSM exhibits advanced performance on temporal graph learning and scales to large temporal graphs with long-range snapshots

Thanks & QA?

https://arxiv.org/abs/2406.00943

https://github.com/EdisonLeeeee/GraphSSM

Jintang Li Sun Yat-sen University

https://edisonleeeee.github.io/

lijt55@mail2.sysu.edu.cn

