Faster Repeated Evasion Attacks in Tree Ensembles

Lorenzo Cascioli, Laurens Devos, Ondrej Kuzelka and Jesse Davis

Accuracy is not all you need!

We often need models to guarantee additional properties.

- ML model to accept/reject loans has 99% test accuracy. Could a loan application ever be...
 - accepted for a man, but rejected for a woman?
 - rejected, but accepted with imperceptible perturbation?

Standard performance metrics cannot answer these questions!

We need **verification** techniques that **reason about model behavior** and **provide guarantees** over any possible unseen input.

Verification often involves repeatedly performing evasion attacks

e.g., one attack per each example in a large test set allows to...

assess if a model is robust to small perturbations of the input

improve a model's robustness

more examples in the paper

We often need to repeatedly solve lots of similar queries. But current methods treat each query in isolation!

Research Question

Can we exploit the fact that verification often consists of many similar problems?

Goal

Improve the applicability of verification tasks relying on repeated evasion attacks.

Contribution 1: Insight Most attacks perturb the same small set of attributes.

Only 10-15% of the attributes is perturbed by more than 5% of the performed attacks.

- 1. Quickly find the set of commonly perturbed attributes with a theoretically grounded procedure
 - run a few attacks using all attributes
 - rank attributes based on how often they are perturbed, and select the top k%
 - a statistical test determines the value of k

Contribution 2: Method

- 1. Quickly find the set of commonly perturbed attributes with a theoretically grounded procedure
- 2. Modify attack methods to only perturb the identified attributes

We use ensemble pruning to reduce model size:

Experimental Evaluation

Average speedup of 9x to run 10 000 evasion attacks.

e.g., repeatedly attack a random forest ensemble using kantchelian attack:

Detailed results in the paper:

- more datasets
- more ensemble types
- more evasion attack methods

Faster Repeated Evasion Attacks in Tree Ensembles

Motivation Problem

Many verification tasks require to **perform lots of evasion attacks**. Current methods **repeatedly solve similar problems** from scratch.

Insight

Algorithm

In practise, only few attributes are often altered.

- 1. Identify subset of relevant attributes.
- 2. Run evasion attacks only perturbing relevant attributes.

Lorenzo Cascioli @l_cascioli

Laurens Devos @laudevs

Ondrej Kuzelka @Kuzelka0

Jesse Davis @jessejdavis1

check out paper and code!

fwo

