End-to-end Ontology Learning with Large Language Models

Andy Lo, Albert Q. Jiang, Wenda Li, Mateja Jamnik

cyal4@cam.ac.uk, qj213@cam.ac.uk, wenda.li@ed.ac.uk, mj201@cam.ac.uk

Open problem in OL: Restricted methods and evaluation Dataset **Definition**: Training • An **ontology** is a formal and structural way of representing domain-specific LLM concepts and their relations. Its basic form is a graph. **Current method & problems:** • Subtasks composition: First predict concepts (nodes), then relations (links). • Lacks context between subtasks \rightarrow limited performance. • Link prediction is $O(n^2) \rightarrow not scalable$. • Evaluation is done per subtask \rightarrow output is not tested directly. LLM Infer **Our solution**: • Predict subgraphs and merge by heuristics. Measure graph similarity to ground truth for evaluation. **1** Data preparation: Source corpus Predict Merge subgraphs and test ontologies. paths to form the target subgraph. New evaluation strategy and metrics We test the output quality by golden-standard evaluation. This requires **②** Finetuning with custom regulariser:

We test the output quality by golden-standard evaluation. This requires robust measures of heterogeneous graph similarity, but existing methods rely on literal text comparison which is sensitive to spelling, capitalisation, choice of word, etc.

Core principle:

- Strong emphasis on semantics over syntax by using pretrained text embeddings.
- Suitable for comparing arbitrary labelled graphs.

Best matching

Our new metrics:

- Fuzzy F1: Fuzzy edge equality testing for intersection between the graphs.
- Continuous F1: Best-scoring edge matching.
- Graph F1: Best-scoring node matching.
- Motif Distance: Purely structural metric by comparing *network motif* counts.

- By nature of tree-like structure, high-level concepts appear orders of magnitude more often than leaf concepts. **Sampling is highly unbalanced**.
- Naive finetuning results in overfitting high-level concepts while underfitting low-level concepts.
- To ensure balanced learning, we **mask the loss per concept** with probability proportional to its occurrence frequency.

<s>[INST] Title: Hybridity

Only train on highlighted words

Hybridity, in its most basic sense ... [/INST]

- Main topic classifications -> Human behavior -> Human activities -> Culture -> Sociology of culture Main topic classifications -> Humanities -> Politics -> Politics by issue -> Politics and race Main topic classifications -> Politics -> Politics by issue -> Politics and race Main topic classifications -> Culture -> Sociology of culture</s>
- and topic classifications -> Culture -> Sociology of cultures

③ Model inference:

 Each document-subgraph prediction is independent, allowing us to easily parallelise inference.

(4) Merging subgraphs:

- Prune edges by simple rules and thresholding. We tune the threshold on the validation set.
- Unlinked nodes are discarded.

Result: Better models, more robust metrics

OLLM outperforms all methods except on Literal F1 and Motif Distance.
Memorising the training set already gives very strong performance on Literal F1 and Motif Distance → They are strongly biased towards overfitting!

ataset	Method	Literal F1 \uparrow	Fuzzy F1 \uparrow	Cont. F1 ↑	Graph F1 \uparrow	Motif Dist. ↓
/ikipedia	Memorisation	0.134	0.837	0.314	0.419	0.063
	Hearst	0.003	0.538	0.350	0.544	0.163
	Rebel	0.004	0.624	0.356	0.072	0.132
	Zero-shot	0.007	0.871	0.455	0.639	0.341
	One-shot	0.031	0.888	0.477	0.610	0.314
	Three-shot	0.031	0.880	0.475	0.622	0.354
	Finetune	0.124	0.884	0.470	0.588	0.050
	OLLM	0.093	0.915	0.500	0.644	0.080
Xiv	Memorisation	0.000	0.207	0.257	0.525	0.037
	Hearst	0.000	0.000	0.151	0.553	0.098
	Rebel	0.000	0.060	0.281	0.546	0.088
	Zero-shot	0.025	0.450	0.237	0.414	0.145
	One-shot	0.072	0.460	0.290	0.433	0.293
	Three-shot	0.051	0.405	0.212	0.385	0.124
	Finetune (transfer)	0.000	0.440	0.225	0.441	0.148
	OLLM (transfer)	0.040	0.570	0.357	0.633	0.097

Table 1: Evaluation metrics of OLLM and baselines on Wikipedia and arXiv. OLLM performs particularly well in modelling semantics, and remains competitive syntactically and structurally.

