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Regression under DP: The setup

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on Rd × [K]× R

A randomized prediction function π : B(R)× Rd → [0, 1]

▶ For any π define Ŷπ s.t. Law(Ŷπ | X = x, S = s) = π(· | x) x ∈ Rd, s ∈ [K]

Risk: R(π)
def
= E[(Ŷπ − η(X))2]

Unfairness: Us(π, ŷ)
def
= |E [π(ŷ | X) | S = s]− E [π(ŷ | X)]|

Optimal fair estimator:

min
π

{R(π) : supp(π(· | x)) = Ŷ for x ∈ Rd, Us(π, ŷ) ≤ εs for ŷ ∈ Ŷ, s ∈ [K]}

Main quantities:

▶ η(x)
def
= E[Y | X = x]

▶ p
def
= (ps)s∈[K], with ps

def
= P(S = s)

▶ τ (x)
def
= (τs(x))s∈[K], with τs(x)

def
= P(S = s | X = x)
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Proposed methodology

Assumption

Bounded signal: |η(X)| ≤ B a.s.

Discretization: For every integer L ≥ 0 and real B > 0, a uniform grid

ŶL
def
=

{
−B,−B(L− 1)

L
, . . . ,−B

L
, 0,

B

L
. . . ,

B(L− 1)

L
,B

}

Entropic regularization: Rβ(π)
def
= R(π) + 1

βE[Ψ(π(· | X))]

▶ Ψ(µ)
def
=

∑
ŷ∈supp(µ)

µ(ŷ) log(µ(ŷ)) - negative entropy

Optimal discretized entropic-regularized fair estimator:

min
π

{Rβ(π) : supp(π(· | x)) = ŶL for x ∈ Rd,

Us(π, ŷ) ≤ εs for ŷ ∈ ŶL, s ∈ [K]}
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Closed form expression of the solution

Lemma

Let t(x)
def
= 1− τ(x)

p
, rℓ(x)

def
=

(
η(x)− ℓB

L

)2
, and λℓ = (λℓs)s, νℓ = (νℓs)s. For

L ∈ N and β > 0 optimal discretized entropic-regularized fair estimator is given
by

πΛ⋆,V⋆(ℓ | x) def
= σℓ

(
β (⟨λ⋆

ℓ′ − ν⋆
ℓ′ , t(x)⟩ − rℓ′(x))ℓ′∈[[L]]

)
for ℓ ∈ [[L]],

where Λ⋆ = (λ⋆
ℓs)ℓ,s and V⋆ = (ν⋆

ℓs)ℓ,s matrices are solutions to

min
Λ,V≥0

{
F (Λ,V)

def
= E

[
LSEβ

((
⟨λℓ − νℓ, t(X)⟩ − rℓ(X)

)
ℓ∈[[L]]

)]
+

∑
ℓ∈[[L]]

⟨λℓ + νℓ, ε⟩
}

.

F is convex and its gradient is (βσ2)-Lipschitz, where σ2 = 2
∑

s∈[K]

1−ps

ps
.
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Main observation: Gradient of F is crucial

Parametric family: For any Λ,V ≥ 0

πΛ,V(ℓ | x) def
= σℓ

(
β (⟨λℓ′ − νℓ′ , t(x)⟩ − rℓ′(x))ℓ′∈[[L]]

)
for ℓ ∈ [[L]]

Gradient mapping: For α > 0,

Gα (Λ,V)
def
=

(Λ,V)− ((Λ,V)− α∇F (Λ,V))+
α

Lemma

Let σ2 def
= 2

∑
s∈[K]

1−ps
ps

, L ∈ N, Λ,V ≥ 0, then for any α > 0, β > 0,

▶
∑

ℓ∈[[L]]s∈[K]

(
Us

(
πΛ,V, ℓ

)
− εs

)2
+
≤ ∥Gα(Λ,V)∥2

▶ R(πΛ,V) ≤ R(πΛ⋆,V⋆ ) +

(
∥(Λ,V)∥ + α

{
σ + ∥ε∥

√
2|ŶL|

})
∥Gα(Λ,V)∥ +

log |ŶL|
β
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Post-processing algorithm
▶ Gradient of F :

∇□ℓs
F (Λ,V) = △E

[
σℓ

(
β (⟨λℓ′ − νℓ′ , t(X)⟩ − rℓ′(X))Lℓ′=−L

)
ts(X)

]
+ εs

▶ Stochastic gradient of F :

g□ℓs
(Λ,V) = △σℓ

(
β (⟨λℓ′ − νℓ′ , t(X)⟩ − rℓ′(X))

L
ℓ′=−L

)
ts(X) + εs

(where □ ∈ {λ, ν} and △ = 1 if □ = λ and △ = −1 otherwise)

Controlled variance: E∥g(Λ,V)−∇F (Λ,V)∥2 ≤ σ2, where σ2 = 2
∑

s∈[K]

1−ps
ps

.

The algorithm

▶ Input: L, T, β,p, B, η, τ

▶ Build uniform grid ŶL over [−B,B]

▶ Set parameters: σ2 = 2
∑

s∈[K]
1−ps

ps
, M = βσ2

▶ Set (Λ,V) 7→ F (Λ,V)

▶ Run a black-box optimizer A(F, σ2,M, T ) to obtain (Λ̂, V̂)

▶ Return: π(Λ̂,V̂)(· | ·)
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Theoretical guarantees

For deterministic prediction:

R⋆ def
= inf

h:Rd→[−B,B]

{
R(h) : sup

t∈R
|P(h(X) ≤ t | S = s) − P(h(X) ≤ t)| ≤

εs

2
, ∀s ∈ [K]

}

Theorem

With ε = (εs)s∈[K] ∈ [0, 1]K , σ2 = 2
∑

s∈[K]

1−ps
ps

, setting β = T
8 log2(T )

and L =
√
T

▶ E
1/2

[ ∑
ℓ∈[[L]]s∈[K]

(
Us

(
πΛ̂,V̂, ℓ

)
− εs

)2

+

]
≤ Õ

(
σ√
T

(
1 + σ√

T
∥(Λ⋆,V⋆)∥

))
▶ E(πΛ̂,V̂) ≤ Õ

((
σ√
T
E

1/2
[
∥(Λ̂, V̂)∥2

]
+ ∥ε∥

T5/4

)(
1 + σ√

T
∥(Λ⋆,V⋆)∥

)
+ B√

T

)
where E(πΛ̂,V̂)

def
= E

[
R(πΛ̂,V̂)

]
−R⋆.

▶ Extension to unknown η and τ : The guarantees still hold when
replacing η and τ with their estimates η̂ and τ̂ if we pay additional
price for estimation of η and τ .
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Thank you!


