QT-ViT: Improving Linear Attention in ViT with Quadratic Taylor Expansion

Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, Emad Barsoum **Advanced Micro Devices, Inc.**

Abstract

- The time complexity and memory consumption of Vision Transformers increase quadratically with the number of input patches.
- Linear attention is a way to mitigate the complexity of the original self-attention mechanism at the expense of effectiveness.
- To make up for the performance gap, previous methods necessitate knowledge distillation or high-order attention residuals that severely increase GPU memory consumption during training, making them unsuitable to train large models.
- We propose QT-ViT models that improve the previous linear self-attention using Quadratic Taylor expansion.
- We substitute the softmax-based attention with **second-order Taylor expansion**, and then accelerate the quadratic expansion by reducing the time complexity with a fast approximation algorithm.
- Extensive experiments demonstrate the efficiency and effectiveness of the proposed QT-ViTs, showcasing the state-of-the-art results. Particularly, the proposed QT-ViTs consistently surpass the previous SOTA EfficientViTs under different model sizes and achieve a new Pareto-front in terms of accuracy and speed.

where the time complexity is changed from $\mathcal{O}(N^2 d)$ to $\mathcal{O}(N d^2)$.

Decompose Quadratic Taylor Expansion

• The quadratic Taylor expansion of the similarity function is:

$$\operatorname{Sim}(\boldsymbol{q},\boldsymbol{k}) = \exp\left(\frac{\langle \boldsymbol{q},\boldsymbol{k}\rangle}{\sqrt{d}}\right) \approx 1 + \frac{\langle \boldsymbol{q},\boldsymbol{k}\rangle}{\sqrt{d}} + \frac{\langle \boldsymbol{q},\boldsymbol{k}\rangle^2}{\sqrt{d}} = \frac{\left(\frac{\langle \boldsymbol{q},\boldsymbol{k}\rangle}{\sqrt{d}} + 1\right)^2 + 1}{2} = \frac{\langle \boldsymbol{\phi}(\boldsymbol{q}),\boldsymbol{\phi}(\boldsymbol{k})\rangle^2 + 1}{2}$$

where $\langle \cdot, \cdot \rangle$ is the dot product and $\phi(x) = \left| \frac{x}{\frac{4}{\sqrt{d}}}, 1 \right|$ is used for vectors q and k.

- It is non-trivial to decompose the above equation into two separate kernel embeddings because of the quadratic term. In the following, we solve this problem by using the Kronecker product.
- Given two vectors $\mathbf{a} = \{a_i\}_{i=1}^d$ and $\mathbf{b} = \{b_i\}_{i=1}^d$, we have:

$$\langle \mathbf{a}, \mathbf{b} \rangle^2 = \left(\sum_{i=1}^d a_i b_i\right)^2$$
.

• This is equal to first compute the Kronecker product of each vector and then applying dot product. Given $K_r(x) = \operatorname{vec}(x \otimes x)$ where \otimes is the Kronecker product and $\operatorname{vec}(\cdot)$ is the vectorized output, we have:

$$< K_r(\mathbf{a}), K_r(\mathbf{b}) >= [a_1 \mathbf{a}, \dots, a_d \mathbf{a}] \cdot [b_1 \mathbf{b}, \dots, b_d \mathbf{b}] = \left(\sum_{i=1}^d a_i b_i\right)^2 = <\mathbf{a}, \mathbf{b}>^2$$

• Thus, we have $\operatorname{Sim}(\mathbf{q}, \mathbf{k}) \approx \frac{<\phi(q), \phi(k)>^2+1}{2} = \frac{+1}{2} = <\phi(\mathbf{q}), \phi(\mathbf{k})>$, where

$$\varphi(\mathbf{x}) = \left[\frac{1}{\sqrt{2}}K_r(\phi(\mathbf{x})), \frac{1}{\sqrt{2}}\right] = \left[\frac{1}{\sqrt{2}}\operatorname{vec}(\phi(\mathbf{x})\otimes\phi(\mathbf{x})), \frac{1}{\sqrt{2}}\right]$$

is the kernel function applied to the query and key vectors.

• Given $x \in \mathbb{R}^d$, we have $K_r(x) \in \mathbb{R}^{d^2}$. Thus, the time complexity of this method is $\mathcal{O}(Nd^3)$, which is bad.

Preliminaries

Softmax Self-Attention

• Given an input matrix $X \in \mathbb{R}^{N \times d}$ where N is the number of patches and d is the dimension of each patch, the query, key and value matrices are:

$$\boldsymbol{Q} = \boldsymbol{X} \boldsymbol{W}_Q$$
, $\boldsymbol{K} = \boldsymbol{X} \boldsymbol{W}_K$, $\boldsymbol{V} = \boldsymbol{X} \boldsymbol{W}_V$.

• Then, the attention score is computed on each pair of patches:

$$\mathbf{O}_{k} = \sum_{i=1}^{N} \frac{\operatorname{Sim}(\mathbf{Q}_{k}, \mathbf{K}_{i})}{\sum_{j=1}^{N} \operatorname{Sim}(\mathbf{Q}_{k}, \mathbf{K}_{j})} \mathbf{V}_{i} = \sum_{i=1}^{N} \frac{\exp(\mathbf{Q}_{k} \mathbf{K}_{i}^{\top} / \sqrt{d})}{\sum_{j=1}^{N} \exp(\mathbf{Q}_{k} \mathbf{K}_{j}^{\top} / \sqrt{d})} \mathbf{V}_{i}$$

• The time complexity of softmax attention is $\mathcal{O}(N^2 d)$.

Linear Self-Attention

$$\mathbf{O}_{k} = \sum_{i=1}^{N} \frac{\phi(\mathbf{Q}_{k})\phi(\mathbf{K}_{i})^{\top}}{\sum_{j=1}^{N} \phi(\mathbf{Q}_{k})\phi(\mathbf{K}_{j})^{\top}} \mathbf{V}_{i} = \frac{\phi(\mathbf{Q}_{k})\left(\sum_{i=1}^{N} \phi(\mathbf{K}_{i})^{\top}\mathbf{V}_{i}\right)}{\phi(\mathbf{Q}_{k})\left(\sum_{j=1}^{N} \phi(\mathbf{K}_{j})^{\top}\right)}$$

• In order to losslessly decompose similarity function $Sim(Q_k, K_i)$, the dimensionality of $\phi(\cdot)$ need to be infinite. • A series of instantiations are proposed to compute $\phi(\cdot)$ efficiently while preserving as much information as possible. • Such as $\phi(x) = elu(x) + 1$, $\phi(x) = relu(x)$, $Sim(q, k) = 1/2 + 1/\pi \cdot (qk^T) + H_r$, etc.

• They need KD or the masked output of original softmax attention H_r to enhance the performance, causing high GPU mem cost.

QT-ViT

Reduce the Time Complexity from $O(Nd^3)$ to $O(Nd^2)$

• By rewriting the definition of $K_r(\phi(\mathbf{x}))$ in its element-wise form, we can get:

$$K_{r}(\phi(\mathbf{x})) = K_{r}\left(\left[\frac{x}{\sqrt[4]{d}}, 1\right]\right) = \left[\frac{x_{1}}{\sqrt[4]{d}} \cdot \left[\frac{x}{\sqrt[4]{d}}, 1\right], \cdots, \frac{x_{d}}{\sqrt[4]{d}} \cdot \left[\frac{x}{\sqrt[4]{d}}, 1\right], \left[\frac{x}{\sqrt[4]{d}}, 1\right]\right]$$
$$= \left[\left\{\frac{x_{1}x_{1}}{\sqrt{d}}, \cdots, \frac{x_{1}x_{d}}{\sqrt{d}}, \frac{x_{1}}{\sqrt{d}}\right\}, \cdots, \left\{\frac{x_{d}x_{1}}{\sqrt{d}}, \cdots, \frac{x_{d}x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}\right\}, \left\{\frac{x_{1}}{\sqrt{d}}, \cdots, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}\right\}, \left\{\frac{x_{1}}{\sqrt{d}}, \cdots, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}\right\}, \left\{\frac{x_{1}}{\sqrt{d}}, \cdots, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}\right\}, \left\{\frac{x_{1}}{\sqrt{d}}, \cdots, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}, \frac{x_{d}}{\sqrt{d}}\right\}$$

- Since the order of the elements in the above equation does not influence the result of the inner product $< K_r(\phi(q)), K_r(\phi(k)) >$ as long as they change the order of their elements in the same manner.
 - Thus, the above equation can be written as:

$$\widehat{K}_{r}(\phi(\mathbf{x})) = \operatorname{concat}(\frac{\{x_{i}x_{j}\}_{i,j=1}^{d}}{\sqrt{d}}, \frac{\{x_{i}\}_{i=1}^{d}}{\sqrt{d}}, \frac{\{x_{i}\}_{i=1}^{d}}{\sqrt{d}}, 1).$$

- Since the computational load mainly comes from the first quadratic term, we reduce the number of elements in this term by using the self-multiplication terms $\{x_i^2\}_{i=1}^d$ to represent all quadratic terms.
 - Therefore, the Kronecker produce can finally be replaced with a compact version:

$$\widetilde{K}_{r}(\phi(\boldsymbol{x})) = \operatorname{concat}\left(\alpha \cdot \sqrt{d} \frac{\{x_{i}^{2}\}_{i=1}^{d}}{\sqrt{d}}, \beta \cdot \sqrt{2} \frac{\{x_{i}\}_{i=1}^{d}}{\sqrt{d}}, \gamma\right)$$

 $= \operatorname{concat} \left(\alpha \cdot \left\{ x_i^2 \right\}_{i=1}^{\alpha}, \beta \cdot \sqrt{\frac{4}{d}} \left\{ x_i \right\}_{i=1}^{d}, \gamma \right) (\alpha, \beta, \gamma \text{ are learnable parameters})$

Experiments

Figure 1: The accuracy-speed trade-offs of the proposed QT-ViTs and other state-of-the-art transformer models on the ImageNet dataset. Latencies are evaluated on the AMD Instinct MI250 GPU.

using	differ	ent bac	kbone
Backbone	AP	AP ₅₀	AP ₇₅

Backbone	AP	AP_{50}	AP_{75}
EfficientViT-B1	39.1	58.0	41.8
QT-ViT-1	39.3	58.2	42.1
EfficientViT-B2	40.8	59.5	44.3
QT-ViT-2	41.1	59.7	44.7
EfficientViT-B3	42.3	60.6	45.5
QT-ViT-3	42.6	60.9	45.9

Table 3: Experimental results on COCO 2017 dataset using different backbones

Backbone	AP	AP_{50}
QT-ViT-1 w/ APE	39.3	58.2
QT-ViT-1 w/o APE	39.2	58.2
QT-ViT-2 w/ APE	41.1	59.7
QT-ViT-2 w/o APE	41.0	59.7
QT-ViT-3 w/ APE	42.6	60.9
QT-ViT-3 w/o APE	42.5	60.8

Figure 2: Attention maps from different linear attention methods including the first-order Taylor expansion, ReLU non-linearity function and the second-order Taylor expansion (ours).

45.8