

EMVP: Embracing Visual Foundation Model for Visual Place Recognition with Centroid-Free Probing

Qibo Qiu^{1,2}, Shun Zhang³, Haiming Gao³, Honghui Yang¹, Haochao Ying¹, Wenxiao Wang¹, Xiaofei He¹

¹ Zhejiang University, Hangzhou, China

² China Mobile (Zhejiang) Research & Innovation Institute, Hangzhou, China

³ Zhejiang Lab, Hangzhou, China

1. Background & Motivation

- The Visual Foundation Model (VFM) has significantly enhanced the performance of Visual Place Recognition (VPR), avoiding training a model from scratch on environmentspecific data.
- 2. This paper focuses on crucial role of **probing** in effectively adapting a VFM for improved image representation.

2. Solution

Remove the explicit calculation of semantic centroids C for the enhanced generalization.

Controlling the **preservation** α of task-specific information for each image, enabling more flexible fine-tuning.

3. Results

Table 1: Comparison with state-of-the-art methods. ^b denotes models trained on the GSV-Cities dataset. Due to the high quality of annotations in GSV-Cities, results from models marked with ^b generally outperform those from their corresponding papers. In contrast, results from models without ^b are reported in their respective papers.

(a) Comparison with single-stage methods.

Method	MSLS Val			Nor	dLand	× [52]	Pit	tts250k	-test	SPED			
Method	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
SPE-VLAD ^b [54]	78.2	86.8	88.8	25.5	40.1	46.1	89.9	96.1	97.3	73.1	85.5	88.7	
Gated NetVLAD ^b [55]	82.0	88.9	91.4	34.4	50.4	57.7	89.7	95.9	97.1	75.6	87.1	90.8	
NetVLAD [♭] [4]	82.6	89.6	92.0	32.6	47.1	53.3	90.5	96.2	97.4	78.7	88.3	91.4	
Conv-AP [♭] [32]	83.4	90.5	92.3	38.2	54.8	61.2	92.4	97.4	98.4	80.1	90.3	93.6	
CosPlace [♭] [17]	83.0	89.9	91.8	34.4	49.9	56.5	91.5	96.9	97.9	75.3	85.9	88.6	
MixVPR [♭] [16]	88.0	92.7	94.6	58.4	74.6	80.0	94.6	98.3	99.0	85.2	92.1	94.6	
EigenPlaces [19]	89.3	93.7	95.0	54.4	68.8	74.1	94.1	98.0	98.7	69.9	82.9	87.6	
SALAD ^{\flat} [12]	92.2	96.4	97.0	76.0	89.2	92.0	95.1	98.5	99.1	92.1	96.2	96.5	
EMVP-L ^b (Ours)	93.9	97.3	97.6	78.4	89.7	92.4	96.5	99.1	99.5	94.6	97.5	98.4	

(b) Comparison with two-stage methods that include a re-ranking stage, marked with $^{\sharp}$.

Method		MSLS V	al	Nor	dLand**	[50]	Pitts30k-test			
Wethod	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
SP-SuperGlue [#] [56]	78.1	81.9	84.3	25.8	35.4	38.2	87.2	94.8	96.4	
Patch NetVLAD [#] [5]	79.5	86.2	87.7	51.6	60.1	62.8	88.7	94.5	95.9	
DELG [#] [57]	83.2	90.0	91.1	51.3	66.8	69.8	89.9	95.4	96.7	
TransVPR [♯] [10]	86.8	91.2	92.4	58.8	75.0	78.7	89.0	94.9	96.2	
R2Former [#] [11]	89.7	95.0	96.2	60.6	66.8	68.7	91.1	95.2	96.3	
SelaVPR [#] [13]	90.8	96.4	97.2	85.2	95.5	98.5	92.8	96.8	97.7	
TransVPR w/o re-ranking [10]	70.8	85.1	89.6	15.9	38.6	49.4	73.8	88.1	91.9	
SelaVPR (gobal) [13]	87.7	95.8	96.6	72.3	89.4	94.4	90.2	96.1	97.1	
EMVP-L [♭] (Ours)	93.9	97.3	97.6	88.7	97.3	99.3	94.0	97.5	98.2	

Achieving State-of-the-Art performance with minimal trainable parameters.

Figure 4: Query (gray) and top 3 retrieved frames (green: successful, red: failed). Moreover, one of the true (blue) matches is displayed for comparison.

EMVP-B successfully finds the closest match in challenging scenarios.

4. Comparison with Different Probing Methods

Table 2: Comparing different backbones and probings. LP, MP, CFP, CN, and DPN_C indicate linear probing, moment probing, centroid-free probing, constant normalization, and dynamic power normalization in probing, respectively. For fairness, results produced by ViT-based models are obtained by fully fine-tuning the last 4 blocks. *Baseline* refers to the simplified NetVLAD adapted by SALAD. The best and the second best results are **bolded** and <u>underlined</u>, respectively.

ID Method	Fea. Dim	Backbone	MSLS Val				NordLand			Pitts250k-test			SPED			
			R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10		
1	NetVLAD [4]	32768	ResNet50	82.6	89.6	92.0	32.6	47.1	53.3	90.5	96.2	97.4	78.7	88.3	91.4	
2	NetVLAD	8192	ViT-B	90.1	95.4	96.8	70.1	86.5	90.2	<u>95.4</u>	<u>98.4</u>	<u>99.1</u>	90.6	95.4	96.7	
3	NetVLAD	24576	ViT-B	92.4	<u>95.9</u>	96.9	<u>71.8</u>	86.5	90.1	95.6	98.7	99.3	90.8	<u>95.7</u>	96.7	
4	LP	768+256	ViT-B	85.3	93.5	95.4	38.1	55.3	61.8	91.3	96.9	98.1	83.0	92.3	94.0	
5	MP	2048	ViT-B	87.3	94.5	96.4	42.6	62.6	70.0	92.5	97.3	98.5	85.2	92.6	94.6	
6	GeM	4096	ViT-B	85.4	93.9	95.0	35.4	52.5	59.6	89.5	96.5	98.0	83.0	92.1	93.9	
7	Baseline	8192+256	ViT-B	90.3	95.7	96.1	56.5	73.0	78.6	94.4	98.4	<u>99.1</u>	88.0	94.7	95.6	
8	+ CN=Softmax	-	-	91.3	95.7	96.4	68.0	82.0	86.2	94.9	98.3	99.0	89.3	94.9	96.4	
9	+ CN= ℓ_2 norm.	-	-	90.8	<u>95.9</u>	96.6	66.4	80.9	84.5	94.5	98.1	99.0	89.0	93.9	95.7	
10	+ DPN_C (<i>i.e.</i> , CFP)	-	-	92.6	96.2	<u>96.8</u>	74.6	87.6	91.3	95.2	98.7	99.3	92.1	95.9	97.2	

Takeaways

- **First-order** methods are inferior to CFP, due to information loss.
- The **second-order** MP is inferior to CFP, lacking of leveraging the priors provided by semantic centroids.
- Directly **removing** centroids using bilinear pooling leads to a performance drop.
- **Increasing** the feature dimension of NetVLAD can significantly enhance the performance. However, it is costly when dealing with the storage of sizable global descriptors.
- CN makes this reinterpretation operation empirically more robust.
 And the improvement brought by CN is dependent on its specific implementation.

5. Comparison with Different Adapters

Table 3: Comparing different fine-tuning methods. DPN_C and DPN_R indicate DPN in CFP and recalibration, respectively. Results of both parallel and sequential versions of DPN_R are reported. For fairness, only the last 4 blocks can be fine-tuned, and all methods employ the same backbone, *i.e.*, ViT-B. The best and the second best results are **bolded** and <u>underlined</u>, respectively.

Method	Fine-tuning	Params.	MSLS Val				NordLa	nd	Р	itts250k-	-test		SPED			
	Туре	(M)	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10		
AnyLoc	Zero-shot	2 — 0	68.7	78.2	81.8	16.1	25.4	30.4	87.2	94.4	96.5	85.3	94.4	95.4		
SALAD	Full	27.1	92.2	96.4	97.0	76.0	89.2	92.0	95.1	98.5	99.1	92.1	96.2	96.5		
CFP	+PSRP	0.14	92.7	96.6	96.9	73.0	86.5	89.5	95.3	98.6	99.2	91.3	95.9	96.9		
	+ DPN _R (para.)	0.05	92.4	96.5	96.8	71.8	85.2	88.9	<u>95.4</u>	98.5	99.1	91.3	96.2	96.7		
(<i>i.e.</i> , EMVP-B)	+ $DPN_R(seq.)$	0.05	93.2	96.9	97.2	76.4	<u>88.8</u>	92.1	95.7	98.9	99.3	<u>91.8</u>	96.5	97.4		

Takeaways

•

- Current VFMs (i.e., DINOv2) lack
 sufficient zero-shot capabilities for
 diverse data in the VPR domain.
 SALAD achieves high performance
 by fully fine-tuning on DINOv2.
- VPR models are typically deployed on mobile robots, and full-parameter update approach **imposes the higher demands on communication**.
- The **sequential DPN**_R performs better. This is primarily because the sequential method recalibrates the backbone features more thoroughly.
- Compared with SALAD and PSRP, DPN_R outperforms them by achieving the best performance while saving 64.3% of trainable parameters (0.14M vs 0.05M).

Welcome to visit our poster Thank you !

Follow the OR code for more details