

EMVP: Embracing Visual Foundation Model for Visual Place Recognition with Centroid-Free Probing

Qibo Qiu^{1,2}, Shun Zhang³, Haiming Gao³, , Honghui Yang¹ , Haochao Ying¹ , Wenxiao Wang¹ , Xiaofei He 1

¹ Zhejiang University, Hangzhou, China

² China Mobile (Zhejiang) Research & Innovation Institute, Hangzhou, China

³ Zhejiang Lab, Hangzhou, China

1. Background & Motivation

- 1. The Visual Foundation Model (VFM) has significantly enhanced the performance of Visual Place Recognition (VPR), avoiding training a model from scratch on **environment specific** data.
- Query adapting a VFM for improved 2. This paper focuses on crucial role of **probing** in effectively image representation.

2. Solution

Controlling the **preservation** α of task-specific information for each image,

enabling more flexible fine-tuning.

entroids α for the enhanced generalization. centroids $\mathcal C$ for the enhanced generalization.

3. Results

Table 1: Comparison with state-of-the-art methods. ^b denotes models trained on the GSV-Cities dataset. Due to the high quality of annotations in GSV-Cities, results from models marked with \flat generally outperform those from their corresponding papers. In contrast, results from models without \overrightarrow{b} are reported in their respective papers.

(a) Comparison with single-stage methods.

(b) Comparison with two-stage methods that include a re-ranking stage, marked with \sharp .

Achieving State-of-the-Art performance with minimal trainable parameters. EMVP-B successfully finds the closest match in

Figure 4: Query (gray) and top 3 retrieved frames (green: successful, red: failed). Moreover, one of the true (blue) matches is displayed for comparison.

challenging scenarios.

4. Comparison with Different Probing Methods

Table 2: Comparing different backbones and probings. LP, MP, CFP, CN, and DPN_C indicate linear probing, moment probing, centroid-free probing, constant normalization, and dynamic power normalization in probing, respectively. For fairness, results produced by ViT-based models are obtained by fully fine-tuning the last 4 blocks. Baseline refers to the simplified NetVLAD adapted by SALAD. The best and the second best results are **bolded** and underlined, respectively.

Takeaways

- **First-order** methods are inferior to CFP, due to information loss.
- The **second-order** MP is inferior to CFP, lacking of leveraging the priors provided by semantic centroids.
- Directly **removing** centroids using bilinear pooling leads to a performance drop.
- **Increasing** the feature dimension of NetVLAD can significantly enhance the performance. However, it is costly when dealing with the storage of sizable global descriptors.
- **CN** makes this reinterpretation operation empirically more robust. And the improvement brought by CN is dependent on its specific implementation.

5. Comparison with Different Adapters

Table 3: Comparing different fine-tuning methods. DPN_C and DPN_R indicate DPN in CFP and Current VFMs (i.e., DINOv2) lack recalibration, respectively. Results of both parallel and sequential versions of DPN_B are reported. For fairness, only the last 4 blocks can be fine-tuned, and all methods employ the same backbone, i.e., ViT-B. The best and the second best results are **bolded** and <u>underlined</u>, respectively.

Takeaways

- **sufficient zero-shot** capabilities for diverse data in the VPR domain. SALAD achieves high performance by fully fine-tuning on DINOv2.
- VPR models are typically deployed on mobile robots, and full-parameter update approach **imposes** the higher demands on communication.
- The **sequential DPN**_R performs better. This is primarily because the sequential method recalibrates the backbone features more thoroughly.
- Compared with SALAD and PSRP, DPN_R outperforms them by achieving the best performance while saving **64.3%** of trainable parameters (0.14M vs 0.05M).

Welcome to visit our poster Thank you !

Follow the OR code for more details