

XIDIAN UNIVERSITY

Connectivity-Driven Pseudo-Labeling Makes Stronger Cross-Domain Segmenters

Dong Zhao, Qi Zang, Shuang Wang*, Nicu Sebe, Zhun Zhong School of Artificial Intelligence, Xidian University

shwang@mail.xidian.edu.cn*

2024.11.13

Table of Contents

02

03

01 Research Motivations

Method Design

Experimental Results

Research Motivations

01 **Research Motivations**

Our Motivations:

- Large-scale mask pre-training enables SAM' s powerful cross-domain capabilities
- Prompt interactive mode, support point, box, mask, text and other prompts

- There is speckle noise in the pseudo labels and has poor structure.
- Speckle noise is difficult to filter out

XIDIAN UNIVERSITY

厚德 求真 砺学 笃行

01 **Research Motivations**

Our Motivations:

Experiments have shown that directly using the target domain image and its pseudo-label to prompt SAM has the following problems:

(1) Using points to prompt SAM is easily affected by pseudo-label noise, which will amplify the noise.

XIDIAN UNIVERSI

(2) Semantic alignment using SAM segmentation is prone to semantic confusion.

厚德 求真 砺学 笃行

Method Design

14

03 Method Design

實行

厚懔

03 Method Design

- Experiments show that modeling noise distribution at the connectivity level is easier to discover category and open set noise than modeling noise distribution at the pixel level.
- As shown in the figure above, by modeling the loss of the connected domain with a two-component Gaussian mixture model, the low-noise connected domain and the high-noise connected domain can be clearly distinguished.

厚德 求真 砺学 笃行

Comparative Experiment:

- In the task settings of various domain adaptation, the methods in this chapter can improve the performance of existing methods.
- Our method can also be combined with the methods in the previous section to improve their performance.

	Road	S.walk	Build.	Wall	Fence	Pole	Tr.Light	sign	Veget.	terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bike	mIoU
					1	Unsper	vised d	omain	adapta	tion: G	$TA \rightarrow$	Citysca	pes							
AdvEnt [70] ICCV'19	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
AdvEnt + Ours	92.0	61.0	87.0	51.0	49.4	48.9	44.5	44.3	86.7	50.0	87.9	63.3	46.0	89.7	57.6	54.6	5.6	47.7	51.6	58.9 (+13.4)
ProDA [90] ^{CVPR'21}	91.5	52.4	82.9	42.0	35.7	40.0	44.4	43.3	87.0	43.8	79.5	66.5	31.4	86.7	41.1	52.5	0.0	45.4	53.8	53.7
ProDA + Ours	94.4	65.6	87.8	55.8	54.7	56.8	58.6	60.3	90.2	51.5	93.7	72.7	48.0	88.1	51.3	65.3		60.3	61.0	64.1 (+9.4)
DAFormer [24] ^{CVPR'22}	95.7	70.2	89.4	53.5	48.1	49.6	55.8	59.4	89.9	47.9	92.5	72.2	44.7	92.3	74.5	78.2	65.1	55.9	61.8	68.2
DAFormer+Ours	96.2	74.4	90.9	56.7	49.7	60.5	62.7	69.4	92.4	54.9	93.9	77.1	53.1	96.6	83.1	82.2	72.5	62.6	65.6	73.4 (+5.3)
HRDA [25] ECCV'22	96.4	74.4	91.0	61.6	51.5	57.1	63.9	69.3	91.3	48.4	94.2	79.0	52.9	93.9	84.1	85.7	75.9	63.9	67.5	73.8
HRDA+Ours	96.6	80.9	92.4	62.5	57.5	61.0	66.7	71.7	92.4	52.3	95.1	80.6	56.3	95.9	86.1	86.6	76.8	65.4	68.7	76.1 (+2.3)
						Source	-free do	main a	daptat	ion: G	$\Gamma A \rightarrow 0$	Citysca	pes							
HCL [28] NIPS'21	92.0	55.0	80.4	33.5	24.6	37.1	35.1	28.8	83.0	37.6	82.3	59.4	27.6	83.6	32.3	36.6	14.1	28.7	43.0	48.1
HCL+Ours	94.6	62.5	88.6	48.4	41.6	45.2	43.5	32.9	84.0	45.3	91.6	66.0	47.5	89.0	42.6	58.8	31.5	47.2	56.2	58.8 (+10.6)
DTST [93] ^{CVPR'23}	90.3	47.8	84.3	38.8	22.7	32.4	41.8	41.2	85.8	42.5	87.8	62.6	37.0	82.5	25.8	32.0	29.8	48.0	56.9	52.1
DTST+Ours	94.9	65.9	89.9	48.2	42.3	45.9	48.9	45.6	85.7	46.2	91.1	68.2	47.6	88.5	44.9	57.8	29.5	50.7	57.8	60.5 (+8.4)
					1	Black-	box do	main a	daptati	on: GI	$A \rightarrow C$	ityscap	oes							
DINE [43] CVPR'22	88.2	44.2	83.5	14.1	32.4	23.5	24.6	36.8	85.4	38.3	85.3	59.8	27.4	84.7	30.1	42.2	0.0	42.7	45.3	46.7
DINE+Ours	89.6	60.8	84.1	46.3	38.4	44.0	41.6	32.2	82.1	41.7	86.6	63.4	44.9	83.9	41.5	58.6		40.5	54.1	54.4 (+7.7)
BiMem [89] ICCV'23	94.2	59.5	81.7	35.2	22.9	21.6	10.0	34.3	85.2	42.4	85.0	56.8	26.4	85.6	37.2	47.4	0.2	39.9	50.9	48.2
BiMem+Ours	93.9	61.4	87.6	47.7	41.3	44.0	43.2	32.7	83.2	44.4	91.4	66.9	46.6	88.7	42.6	60.8		46.2	55.0	56.7 (+8.5)

XIDIAN UNIVERSITY

厚德 求真 砺学 笃行

Comparative Experiment:

Our method can provide a new approach to solving the domain generalization problem, which can alleviate the semantic and open set noise problems encountered by domain generalization methods when using unlabeled open data.

驾行

	Backbone	Using SAM	Cityscapes	BDD-100K	Mapillary	Average
SHADE [96] ^{IJCV'23}		×	46.6	43.7	45.5	45.3
TLDR [35] ICCV'23		×	47.6	44.9	48.8	47.1
MoDify [32] ICCV'23	ResNet-101	×	48.8	44.2	47.5	46.8
+ CLOUDS [4] ^{CVPR'24} + SeCo (Ours)		√ ✓	50.6 52.4	44.8 46.1	56.6 57.7	50.7 52.1
HRDA [25] ECCV'22		×	57.4	49.1	61.1	55.9
+ CLOUDS [4] ^{CVPR'24} + SeCo (Ours)	MiT-B5	v	58.1 58.8	53.8 54.9	62.3 63.6	58.1 59.1

		l Open Cloudy Overcast		Compound + Open Overcast
28.7	29.1	33.1	32.5	30.9
pervised	domain ad	aptation: ($\text{GTA5} \rightarrow \text{BE}$	DD-100k
40.5	39.9	42.1	40.9	40.9
-	-	-	-	44.0
33.4	32.5	36.7	37.8	35.1
43.6	42.1	49.7	50.7	46.5 (+11.4)
40.3	40.6	43.2	42.5	41.7
47.6	45.7	51.9	52.6	49.5 (+7.8)
rce-free o	lomain ad	aptation: C	$\text{STA5} \rightarrow \text{BD}$	D-100k
35.4	33.4	41.4	41.2	37.9
41.7	42.1	44.7	47.9	44.1 (+6.2)
	- 33.4 43.6 40.3 47.6 cce-free c 35.4 41.7	33.4 32.5 43.6 42.1 40.3 40.6 47.6 45.7 rce-free domain ad 35.4 35.4 33.4 41.7 42.1	33.4 32.5 36.7 43.6 42.1 49.7 40.3 40.6 43.2 47.6 45.7 51.9 rce-free domain adaptation: C 35.4 33.4 41.4 41.7 42.1 44.7	33.4 32.5 36.7 37.8 43.6 42.1 49.7 50.7 40.3 40.6 43.2 42.5 47.6 45.7 51.9 52.6 cc-free domain adaptation: GTA5 \rightarrow BD 35.4 33.4 41.4 41.2 41.7 42.1 44.7 47.9

Pseudo-labeling on close-set data from the BDD dataset.

Comparative Experiment:

Compared with various methods of using Segment Anything Model, including using SAM as pre-training and using SAM to optimize pseudo-labels, the method in this chapter shows advantages.

		(1) Use the backbo	ne of SAM to empow	ver CDSS			
	DAFormer	+ (SAM ViT-B)	+ Ours	HRDA	+ (SAM ViT-B)	+ Ours	
G2C	68.2	64.1 (-4.1)	73.4 (+5.2)	73.8	69.1 (-4.7)	76.1 (+2.3)	
S2C	60.9	60.2 (-0.7)	65.1 (+4.2)	65.8	63.7 (-2.1)	68.5 (+2.3)	
	(2 Use CLIP + SAM (C	SAM) to get the initia	al pseudo-label			
	CSAM	Ours + 1	Ours + HRDA				
G2C	43.7	69.1	73.4	73.5	76.	1	
S2C	41.7	61.1	65.1	65.2	68.5		
2		③ Use SAM	on coarse pseudo-lat	pels			
		Using Source	-model's PL	Using UDA's PL			
Method	Initial	Vanilla SAM	Ours	Vanilla	Ours	Upper Bound	
AdvEnt [70] ICCV'19	45.5	48.6 (+3.1)	53.9 (+8.4)	50.9 (+5.5)	58.9 (+13.4)	69.1	
ProDA [90] CVPR'21	53.7	50.1 (-1.7)	58.2 (+4.5)	57.9 (+4.3)	64.1 (+9.4)	69.1	
DAFormer [24] CVPR'22	68.2	67.7 (-0.5)	69.9 (+1.7)	69.7 (+1.5)	73.4 (+5.3)	76.4	
HRDA [25] ECCV'22	73.8	72.7 (-1.1)	74.6 (+0.8)	74.6 (+0.8)	76.1 (+2.3)	77.1	

Qualitative Analysis:

貫行

- In terms of the use of unlabeled open data, the method in this chapter shows that it can alleviate the semantic and open set noise problems.
- In indoor scenes, medical, and remote sensing scenes, the methods in this chapter have shown that they can improve the pseudo-label quality of existing domain adaptation methods.

厚德 求真 砺学 笃行

Thanks!

QUESTIONS & ANSWERS

葡 西安電子科技大學