

WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models

Peng Wang*, Zexi Li*, Ningyu Zhang[†], Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen[†]

* Equal contribution. †Equally advising corresponding authors.

NeurIPS 2024

Background

□Lifelong Model Editing

LLM has a series of issues such as knowledge cutoff and hallucination. Continuous editing is crucial.

Motivation

THIS ING UNIVERSITY

□Pioneering Work

Locate then Edit

Meta Learning

MEND [Mitchell et al, ICLR'22]

Working Memory Editing

The impossible triangle among Reliability, Generalization, and Locality

Reliability

LLMs can remember current and previous edits after sequential editing.

Generalization

Editing can also understand and generalize to different queries (unseen).

Locality

It does not affect pre-trained knowledge unrelated to the edits

Methodology

WISE Overview: knowledge editing inspired by cognitive science

$FFN(\mathbf{f}) = \mathbf{a} \cdot \mathbf{W}_v = \sigma(\mathbf{f}^\top \cdot \mathbf{W}_k) \cdot \mathbf{W}_v,$

1. Utilize the target layer MLP as a memory component.

1. Green: Long-term memory

(pre-trained knowledge)

- 2. Blue: Working memory (editable knowledge)
- 2. Knowledge memory fusion : Moderate knowledge density leads to better editing effects
- 3. Knowledge memory retrieval : Retrieve working memory through neural activation.

WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models (2024)

Methodology

□Knowledge Memory Fusion

(1) Initialize W_{V}' with W_{V}

Merge Working Memory

 $\mathbf{W}_{v'} \leftarrow \mathbf{W}_v + \operatorname{Ties}(\mathbf{T}_e; \mathbf{W}_v).$

Divide thousands of edit partitions by

random mask gradients.

(2) Generate k random masks with mask ratio ρ for edit streams {xt}
xt-2 xt-1 xt xt+1 xt+2 xt+3 ... T (time)
(3) Edit in side memory subspaces
(4) Merge subspaces into one side memory via Ties-Merge

Methodology

□WISE: Gate mechanism, working/long-term Memory?

□Experimental Results: QA

	QA															
Method	T = 1				T = 10				T = 100				T = 1000			
	Rel.	Gen.	Loc.	Avg.	Rel.	Gen.	Loc.	Avg.	Rel.	Gen.	Loc.	Avg.	Rel.	Gen.	Loc.	Avg.
	LLaMA-2-7B															
FT-L	0.57	0.52	0.96	0.68	0.48	0.48	0.76	0.57	0.30	0.27	0.23	0.27	0.19	0.16	0.03	0.13
FT-EWC	0.96	0.95	0.02	0.64	0.82	0.76	0.01	0.53	0.83	0.74	0.08	0.55	0.76	0.69	0.08	0.51
MEND	0.95	0.93	0.98	0.95	0.26	0.28	0.28	0.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ROME	0.85	0.80	0.99	0.88	0.64	0.62	0.75	0.67	0.23	0.22	0.04	0.16	0.01	0.01	0.00	0.01
MEMIT	0.84	0.81	0.99	0.88	0.58	0.58	0.85	0.67	0.02	0.02	0.02	0.02	0.04	0.04	0.02	0.03
MEMIT-MASS	0.84	0.81	0.99	0.88	0.75	0.72	0.97	0.81	0.76	0.68	0.85	0.76	0.69	0.65	0.62	0.65
DEFER	0.68	0.58	0.56	0.61	0.65	0.47	0.36	0.49	0.20	0.12	0.27	0.20	0.03	0.03	0.74	0.27
GRACE	0.98	0.08	1.00	0.69	0.96	0.00	1.00	0.65	0.96	0.00	1.00	0.65	0.97	0.08	1.00	0.68
WISE	0.98	0.92	1.00	0.97	0.94	0.88	1.00	0.94	0.90	0.81	1.00	0.90	0.77	0.72	1.00	0.83
Mistral-7B																
FT-L	0.58	0.54	0.91	0.68	0.39	0.39	0.50	0.43	0.11	0.10	0.02	0.08	0.16	0.13	0.01	0.10
FT-EWC	1.00	0.99	0.01	0.67	0.84	0.78	0.02	0.55	0.82	0.72	0.09	0.54	0.76	0.69	0.09	0.51
MEND	0.94	0.93	0.98	0.95	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ROME	0.79	0.77	0.98	0.85	0.58	0.57	0.75	0.63	0.05	0.05	0.02	0.04	0.04	0.04	0.02	0.03
MEMIT	0.81	0.79	0.99	0.86	0.46	0.45	0.61	0.51	0.00	0.00	0.01	0.00	0.04	0.04	0.02	0.03
MEMIT-MASS	0.81	0.79	0.99	0.86	0.74	0.71	0.97	0.81	0.73	0.71	0.88	0.77	0.73	0.70	0.62	0.68
DEFER	0.64	0.54	0.79	0.66	0.53	0.43	0.29	0.42	0.28	0.17	0.26	0.24	0.02	0.02	0.67	0.24
GRACE	1.00	0.00	1.00	0.67	1.00	0.00	1.00	0.67	1.00	0.00	1.00	0.67	1.00	0.02	1.00	0.67
WISE	0.98	0.97	1.00	0.98	0.92	0.89	1.00	0.94	0.87	0.80	1.00	0.89	0.70	0.67	1.00	0.79

WISE maintains 70%+ editing success rate and 100% locality preservation after 1,000 edits.

Experiments

Where to introduce WISE into the LLM

- Finding 1: Mid-to-Late Layers is effective.

 Finding 2: Gate mechanism routes the editing prompt and unseen paraphrases into the side memory

Hallucination (selfcheckgpt)

Figure 3: Activations of the memory routing module of WISE when vary- D ing T. X-axis: Num edits. LLaMA-7B.

Analysis

WISE-Retrieve will gradually increase computational and inference costs.

WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models (2024)

Analysis

WISE-Retrieve_{oracle}: Based on the retrieval upper bound, we observe significant room for improvement. As shown in Figure (b), the bottleneck of WISE-Retrieve is retrieval accuracy.

Figure (b): 3K edits **boost retrieval rate to 88%**, +3% (compared to (a.))

Improve memory specificity through replay:

 L_{memo} : Ensures that the current shard has lower activation for past edit prompts.

$$L'_a = L_a + \underbrace{\max(0, \Delta_{\operatorname{act}}(\mathbf{x}_m) - \alpha)}_{\mathbf{W}_j}, \quad \text{s.t. } \mathbf{x}_m \in \mathcal{D}_{\mathbf{W}_j}.$$

 $L_{\rm memo}$

Thanks for Listening