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Motivation

Output of the forward functions in NN layers can be determined by
the solutions to optimization problems. Applications:
▶ Portfolio optimization with estimated returns and risk matrices;
▶ Autonomous driving with pre-identified traffic status;
▶ Electricity power allocation with predicted electricity demand.



Problem formulation

Definition (Differentiable Convex Optimization Layer)
Given the input y ∈ Rp, output z∗ ∈ Rd , a differentiable convex
optimization layer is defined as

z∗(y) = arg min
z∈Rd

fy (z), s.t. hy (z) = 0, gy (z) ≤ 0.

Given loss function L, the derivative of L w.r.t y can be written as
∂L
∂y = ∂L

∂z∗
∂z∗

∂y .



Related work and problems

Real-world scenarios involve different kind of convex problems,
large-scale datasets and numerous constraints.
▶ Unrolling: unroll the iterations of the optimization process and

use the decision variable from the final iteration as a proxy
solution. (Additional unrolling cost)

▶ Implicit Methods: Implicit function theorem to KKT condition.
(Relied on coupled optimizers/need to solve high-dim linear
system/most on QP)

▶ Learn to optimize: Train a solver network to solve constrained
problem. (Low efficiency and accuracy)



Framework

▶ Decoupled forward and backward pass;
▶ Reformulate backward pass as a simple QP.
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Strengths

Decoupled forward and backward pass:
▶ Choose different optimizers in the forward and backward pass

(i.e. a suitable advanced optimizer for specific convex forward
pass problem, and another optimizer which can solve the
simple QP in the backward pass easily).

▶ Any choice with flexibility! Improvement with evolving solver
technologies.

Reformulate backward pass as a simple QP:
▶ Instead of solving the high-dim KKT+IFT linear system, we

can instead solve a equivalent QP problem (but only with
several equality constraints).

▶ Much faster than solving the linear system, and other
coupled/unrolling methods!



The linear system for gradient calculation

By [1], we can calculate the gradient ∂z∗

∂y by applying IFT to KKT
system after the problem solved, then get ∇yL = ∂L

∂z∗
∂z∗

∂y :

 P(z⋆, ν⋆, λ⋆) G (z⋆)⊤ A(z⋆)⊤

D (λ⋆)G (z⋆) D (g(z⋆)) 0
A(z⋆) 0 0




∂z⋆

∂y
∂λ⋆

∂y
∂ν⋆

∂y

 = −

 q(z⋆, ν⋆, λ⋆)
c(z⋆, λ⋆)
b(z⋆)

 ,

Where ν and λ are lagrangian multipliers, and
P(z⋆, ν⋆, λ⋆) = ∇2f (z⋆) +∇2h(z⋆)ν⋆ +∇2g(z⋆)λ⋆,
A(z⋆) = ∇h(z⋆) and G (z⋆) = ∇g(z⋆). Let
q(z⋆, ν⋆, λ⋆) = ∂(∇f (z⋆) +∇h(z⋆)ν⋆ +∇g(z⋆)λ⋆)/∂y ,
b(z⋆) = ∂h(z⋆)/∂y and c(z⋆, λ⋆) = ∂(D(λ⋆)g(z⋆))/∂y .



Reformulation: Main theorem

Theorem
Under regularity conditions,
∇yL = [q(z⋆, ν⋆, λ⋆), c(z⋆, λ⋆), b(z⋆)][z̃ , λ̃, ν̃]⊤ and z̃ , λ̃, ν̃ is the
optimal solution of following QP:

minimize
z̃

1
2
z̃⊤P ′z̃ + q′

⊤
z̃ s.t. A′z̃ = b′, G ′

+z̃ = c ′+,

where all the matrices and vectors above are directly derived from
formulating the KKT conditions and solving the forward pass
problem.
We use OSQP[2] as our backward pass solver in experiments.



Why our method works?

Rather than solving the KKT + IFT linear system, we only need to
solve a simple QP to obtain the gradients(equivalent). Why
compute gradients in this way is much faster?
▶ The constraint in the new QP is A′z̃ = b′, G ′

+z̃ = c ′+. After
solving the forward pass, the number of active constraints is
much less than the original problem, and we only take use of
the equality form of these active constraints to form this new
QP.

▶ Solvers evolve quickly. We now have decoupled forward pass
and backward pass, which means that we can apply any solver
to the forward convex problem (QP, LP, SOCP, etc.) and any
QP solver to the backward problem. Highly potential!



Discussion: nonconvex forward pass

▶ BPQP allows for the derivation of gradients that preserve the
KKT norm, as elaborated in our paper, under "General
Gradients." , which means that when KKT norm is small,
BPQP can derive a high quality gradient.

▶ Therefore, when a non-convex solver used in the forward pass
successfully achieves a solution that is close to or even reaches
a local or global minimum (small KKT norm), BPQP can still
compute well-behaved gradients effectively.



Small Scale

Size Method 100×20 500×100
Problem Runtime (scale 1.0e-04)
QP BPQP 35.1(±3.8) 571.6(±130.7)

Alt-Diff [3] 475.3(±402.2) 3044.7(±992.3)
OptNet [1] 1030.2(±238.5) 1872.8(±1254.0)
CVXPY [4] 1862.9(±240.5) 4716.2(±185.6)

LP BPQP 29.5(±6.7) 318.7(±106.4)
OptNet [1] 963.1(±230.0) 970.5(±252.5)
CVXPY [4] 930.4(±150.3) 5046.1(±189.7)

SOCP BPQP 63.1(±1.6) 242.9(±2.7)
CVXPY[4] 105.0(±2.9) 334.3(±3.2)

Table: Repeat 200 times.



Large Scale

Size Method 3000×1000 5000×2000
Problem Runtime (scale 1.0e-01)
QP BPQP 70.6(±4.7) 262.8(±17.0)

Alt-Diff [3] 282.4(±152.8) 1820.6(±59.4)

Table: Repeated 50 times

Method BPQP CVXPY OptNet Alt-Diff
Avg. CosSim. 0.992(±0.09) 0.924(±0.15) 0.989(±0.12) 0.985(±0.11)

Table: Gradient accuracy on QP problems.



Implementation

▶ Experiments in real-world applications (Quant finance) can be
found on our paper.

▶ We will release example implementations & applications in
Qlib.
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