

Spiking Graph Neural Network on Riemannian Manifolds

Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng and Philip S. Yu

Contact: <u>ccesunli@ncepu.edu.cn</u> North China Electric Power University, Beijing, China

Source code: https://github.com/ZhenhHuang/MSG

Motivations

- Graph data is non-Euclidean, and it's hard to represent its geometric properties by binary spike trains.
- BPTT training for SNN is non-differentiable and high time latency delay.
- Surrogate gradient with BPTT may cause gradient vanishing and explosion.
- Float operations on the Riemannian manifold contradict the binary property of SNN.

Contributions

- First Graph-SNN on the Riemannian manifolds (MSG) without manifold operations on forward phase.
- New training methods *DvM* builds relation to the manifold.
- Avoids high latency and gradient vanishing and explosion.
- Lower energy consumption and effective model performance.
- Theoretically show *MSG*'s connection to manifold ODEs.

Manifold-valued Spiking GNN

BPTT vs DvM $\nabla_{W^{l}} \mathcal{L} = \sum_{t} \left[\frac{\partial s^{l}[t]}{\partial W^{l}} \right]^{*} \nabla_{s^{l}[t]} \mathcal{L}$

Differentiation via Manifold:

BPTT:

Theorem 4.1 (Backward Gradient). Let \mathcal{L} be the scalar-valued function, and \mathbf{z}^l is the output of *l*-th layer with parameter \mathbf{W}^l , which is delivered by tangent vector \mathbf{v}^l . Then, the gradient of function \mathcal{L} w.r.t \mathbf{W}^l is given as follows:

$$\nabla_{\mathbf{W}^{l}} \mathcal{L} = \left[\frac{\partial \mathbf{v}^{l-1}}{\partial \mathbf{W}^{l}}\right]^{*} \left[D_{\mathbf{v}^{l-1}} \phi^{l-1}\right]^{*} \nabla_{\mathbf{z}^{l}} \mathcal{L}, \quad \nabla_{\mathbf{z}^{l}} \mathcal{L} = \left[D_{\mathbf{z}^{l}} \psi^{l}\right]^{*} \nabla_{\mathbf{z}^{l+1}} \mathcal{L}, \tag{12}$$

where $\phi^{l-1}(\cdot) = \operatorname{Exp}_{\mathbf{z}^{l-1}}(\cdot), \ \psi^{l}(\cdot) = \operatorname{Exp}_{(\cdot)}(\mathbf{v}^{l}), \ and \ [\cdot]^{*}$ means the matrix form of pullback.

BPTT via spikes:

- 1. High time steps latency delay
- 2. Non-differentiable
- 3. Gradient vanishing/explosion

Differentiation via Manifold:

- 1. Recurrence-free
- 2. Differentiable by smooth function
- 3. Avoid gradient vanishing/explosion

Algorithm 1 Training MSG by the proposed Differentiation via Manifold **Input:** Graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{F}, \mathbf{A})$, Manifold \mathcal{M} , Loss function over the manifold $\mathcal{L}(\cdot)$, Number of spiking layers L, Original points O. **Output:** Parameters $\{\mathbf{W}^l\}_{l=0,\dots,L}$ while not converging do 1: 2: \triangleright forward pass Input current $\mathbf{X}^0 = \text{GCN}(\mathbf{A}, \mathbf{F}; \mathbf{W}^0);$ 3: Initialize $[\mathbf{S}^0, \mathbf{Z}^0] = MSNeuron(\mathbf{X}^0, \mathbf{O});$ 4: for each spiking layer l = 1 to L do 5: $\mathbf{X}^{(l-1)} = \mathrm{GCN}(\mathbf{A}, \mathbf{S}^{(l-1)}; \mathbf{W}^l);$ 6: $[\mathbf{S}^{l}, \mathbf{Z}^{l}] = \mathrm{MSNeuron}(\mathbf{X}^{(l-1)}, \mathbf{Z}^{(l-1)});$ 7: end for 8: 9: \triangleright backward pass 10: Compute $\nabla_{\mathbf{z}^L} \mathcal{L}$ from $\mathcal{L}(\mathbf{Z}^L)$. for layer l = L - 1 to 1 do 11: Compute $D_{\mathbf{z}^{l}}\psi^{l}, D_{\mathbf{v}^{l-1}}\phi^{l-1}, \frac{\partial \mathbf{v}^{l-1}}{\partial \mathbf{W}^{l}}$. Compute $\nabla_{\mathbf{z}^{l}}\mathcal{L}, \nabla_{\mathbf{W}^{l}}\mathcal{L}$ as Eq. [12]. 12: 13: Update \mathbf{W}^{l} . 14: end for 15: 16: end while

Theory: MSG as Neural ODE Solver

Definition 5.1 (Dynamic Chart Solver [17]). The manifold ODE in Eq. (12) with initial condition $\mathbf{z}(0) = \mathbf{z}$ can be solved with a finite collection of successive charts $\{(U_i, \phi_i)\}_{i=1,...,L}$. If ode_i is the numerical solver to Euclidean ODE corresponding to the *i*-th chart, $\mathbf{y}(t) = \operatorname{ode}_i(t)$ on $[\tau_i, \tau_i + \epsilon_i]$, then $\mathbf{z}(t)$ in Eq. (13) is given as

$$(\phi_L^{-1} \circ \operatorname{ode}_L \circ (\phi_L \circ \phi_{L-1}^{-1}) \circ \dots \circ (\phi_2 \circ \phi_1^{-1}) \circ \operatorname{ode}_1 \circ \phi_1)(t).$$

That is, a manifold ODE can be solved in Euclidean subspaces given by a series of successive charts.

Theorem 5.2 (MSG as Dynamic Chart Solver). If $\mathbf{y}(t) : [\tau, \tau + \epsilon] \to \mathbb{R}^n$ is the solution of

$$\frac{d\mathbf{y}(t)}{dt} = (D_{\text{Exp}_{\mathbf{z}}(\mathbf{y}(t))} \text{Log}_{\mathbf{z}}) u(\text{Exp}_{\mathbf{z}}(\mathbf{y}(t)), t),$$
(16)

then $\mathbf{z}(t) = \operatorname{Exp}_{\mathbf{z}}(\mathbf{y}(t))$ is a valid solution to the manifold ODE of Eq. (13) on $t \in [\tau, \tau + \epsilon]$, where $\mathbf{z} = \mathbf{z}(\tau)$. If $\mathbf{y}(t)$ is given by the first-order approximation with the ϵ small enough,

$$\mathbf{y}(\tau + \epsilon) = \epsilon \cdot (D_{\mathbf{z}} \operatorname{Log}_{\mathbf{z}}) u(\mathbf{z}(\tau), \tau), \tag{17}$$

then the update process of Eqs. (4) and (3) in MSG is equivalent to Dynamic Chart Solver in Eq. (13).

Figure 3: Charts given by the logarithmic map.

- 1. MSG approximates a solver of manifold Ordinary Differential Equations (ODEs).
- 2. Each layer solves the ODE of a smooth path, the endpoint is parameterized by a GNN related to the spikes.

(15)

3. Layer-by-layer forwarding solves the manifold ODE from the current chart to the successive chart.

Experiment Results

Table 1: Node Classification (NC) in terms of classification accuracy (%) and Link Prediction in terms of AUC (%) on Computers, Photo, CS and Physics datasets. The best results are **boldfaced**, and the runner-ups are <u>underlined</u>. The standard derivations are given in the subscripts.

		Com	outers	Photo CS		Physics			
		NC	LP	NC	LP	NC	LP	NC	LP
(r)	GCN [18]	83.55±0.71	92.07 ± 0.40	86.01±0.20	88.84±0.39	91.68±0.84	93.68±0.84	95.03±0.19	93.46±0.39
Ē	GAT [86.82±0.04	91.91±1.08	86.68±1.32	88.45 ± 0.07	91.74±0.22	94.06±0.70	95.11±0.29	93.44±0.70
AN	SGC 🖽]	82.17±1.25	90.46 ± 0.80	87.91±0.65	89.84 ± 0.40	92.09±0.05	95.94±0.43	94.77±0.32	95.93 ± 0.70
4	SAGE [1]	81.69±0.86	90.56 ± 0.48	89.41±1.28	$89.86{\scriptstyle \pm 0.90}$	92.71±0.73	95.22 ± 0.14	95.62±0.26	95.75±0.37
ANN-R	HGCN [3]	88.71±0.24	96.88±0.53	89.18±0.50	94.54 ± 0.20	90.72±0.16	93.02±0.26	94.46±0.20	94.10±0.64
	κ-GCN 🛄	89.20±0.50	95.30 ± 0.20	92.22 ± 0.62	94.89 ± 0.15	91.98±0.15	94.86 ± 0.18	95.85±0.20	94.58 ± 0.22
	Q-GCN [4]	85.94±0.93	96.98±0.05	92.50±0.95	97.47 ± 0.03	91.18±0.28	93.39 ± 0.20	94.84±0.25	OOM
4	HyboNet [54]	86.29±2.30	$96.80{\scriptstyle \pm 0.05}$	92.67±0.09	97.70±0.07	92.34±0.03	95.65 ± 0.26	95.56±0.18	98.46±0.49
[7]	SpikeNet [45]	88.00±0.70	-	92.90±0.10	-	92.15±0.18	-	92.66±0.30	-
I-NNS	SpikeGCN [5]	86.90±0.30	91.12±1.79	92.60±0.70	93.84 ± 0.03	90.86±0.11	95.07 ± 1.22	94.53±0.18	92.88 ± 0.80
	SpikeGCL [6]	89.04±0.08	92.72 ± 0.03	92.50±0.17	95.58 ± 0.11	91.77±0.11	95.13±0.24	95.21±0.10	94.15±0.29
	SpikeGT [55]	81.00±1.06	-	90.66±0.38	-	91.86±0.61	-	94.38±1.57	-
	MSG (Ours)	89.27±0.19	94.65±0.73	93.11±0.11	$96.75{\scriptstyle \pm 0.18}$	92.65±0.04	95.19±0.15	95.93±0.07	93.43 ± 0.16

Table 3: Energy cost. The number of parameters at the running time (KB) and theoretical energy consumption (mJ) on Computers, Photo, CS and Physics datasets. The best results are **boldfaced**, and the runner ups are <u>underlined</u>.

		Computers		Photo		CS		Physics	
		#(para.)	energy	#(para.)	energy	(#(para.)	energy	(para.)	energy
G	GCN [18]	<u>24.91</u>	1.671	24.14	0.893	218.29	18.444	269.48	42.842
÷	GAT []	24.99	2.477	24.22	1.273	218.38	28.782	269.55	81.466
Z	SGC [19]	7.68	0.508	5.97	0.219	102.09	8.621	42.08	6.688
4	SAGE 📮	49.77	1.671	48.23	0.893	436.53	18.444	538.92	42.842
~	HGCN [3]	24.94	1.614	24.96	0.869	217.79	18.390	269.31	42.800
Ē	κ-GCN [13]	25.89	1.647	25.12	0.889	218.24	18.440	269.44	42.836
Z	Q-GCN [4]	24.93	1.629	24.96	0.876	217.83	18.393	269.34	42.809
4	HyboNet [54]	27.06	1.625	26.29	0.875	219.94	18.399	271.47	42.825
(m)	SpikeNet [43]	101.22	<u>0.070</u>	98.07	0.040	438.51	0.218	540.04	0.334
F	SpikingGCN [5]	38.40	0.105	29.84	0.046	510.45	1.871	210.40	1.451
SNI	SpikeGCL [6]	59.26	0.121	57.85	0.067	445.69	<u>0.128</u>	548.74	<u>0.214</u>
	SpikeGT [55]	77.07	1.090	74.46	0.584	365.28	6.985	355.77	12.524
	MSG(Ours)	26.95	0.047	25.68	<u>0.043</u>	226.15	0.026	<u>143.72</u>	0.029

Table 2: Ablation study of geometric variants. Results of node classification in terms of ACC (%).

	Computers	Photo	CS	Physics
\mathbb{H}^{32}	89.27±0.19	93.11±0.11	92.65 ± 0.04	95.93±0.07
\mathbb{S}^{32}	87.84 ± 0.77	$92.03{\scriptstyle\pm0.79}$	92.72 ± 0.06	$95.85{\scriptstyle\pm0.02}$
\mathbb{E}^{32}	$88.94{\scriptstyle\pm0.24}$	$\underline{92.93{\scriptstyle\pm0.21}}$	$92.82{\scriptstyle\pm0.04}$	$95.81{\scriptstyle\pm0.04}$
$\mathbb{H}^{16} \times \mathbb{H}^{16}$	89.18 ± 0.25	92.06±0.14	92.67 ± 0.10	95.90 ± 0.04
$\mathbb{H}^{16} \times \mathbb{S}^{16}$	88.00 ± 1.05	$91.97{\scriptstyle\pm0.08}$	$92.33{\scriptstyle\pm0.21}$	95.73±0.11
$\mathbb{S}^{16} \times \mathbb{S}^{16}$	$82.49{\scriptstyle\pm1.18}$	$92.31{\scriptstyle\pm0.45}$	$92.18{\scriptstyle\pm0.21}$	$95.81{\scriptstyle\pm0.10}$

(a) Backward times in model training.

Visualizations

— vector vector point point

(a) The norm of backward gradient of L with respect to z in each spiking layers.

(b) The norm of backward gradient of L with respect to v in each spiking layers.

