

Latent Neural Operator for Solving Forward and Inverse PDE Problems

Tian Wang Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences wangtian2022@ia.ac.cn

Chuang Wang* Institute of Automation, Chinese Academy of Sciences School of Artificial Intelligence, University of Chinese Academy of Sciences wangchuang@ia.ac.cn

Background: Concept of PDE

Forward Problem

- Definition: given the coefficients, initial condition (IC) and boundary condition (BC), obtain the solution
- Applications: material property prediction, weather forecasting, industrial simulation
- Inverse Problem

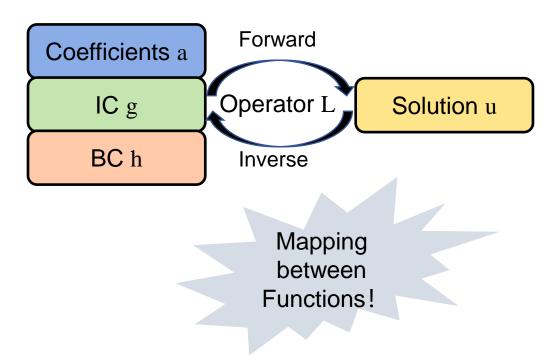
Definition:

- (1) System Identification: given partially observed solution, obtain the coefficients
- (2) Boundary Inference: given partially observed solution,

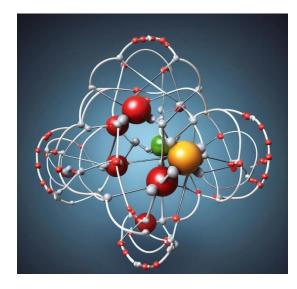
obtain the IC and BC

□ Applications: geological exploration, pollution detection

 $L_a(u(x,t)) = 0$ $x, t \in D \times [0,T]$ IC : u(x,t) = g(x), t = 0 $BC : u(x,t) = h(x,t), x \in \partial D$

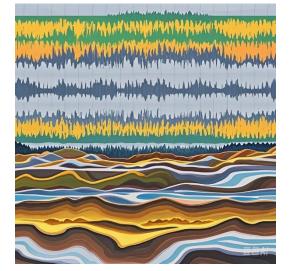


Background: Application of PDE



Material Property Prediction

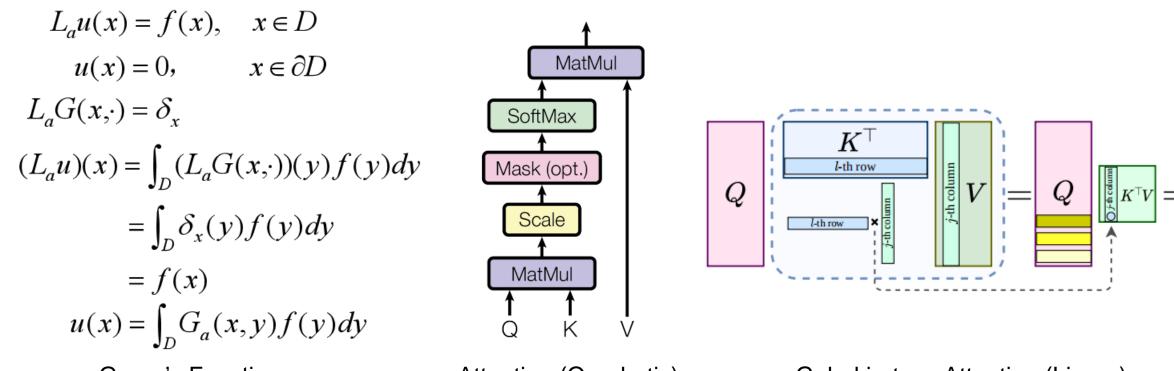
Weather Forecasting



Geological Exploration

Industrial Simulation

Background: Neural Operator and Transformer



Green's Function

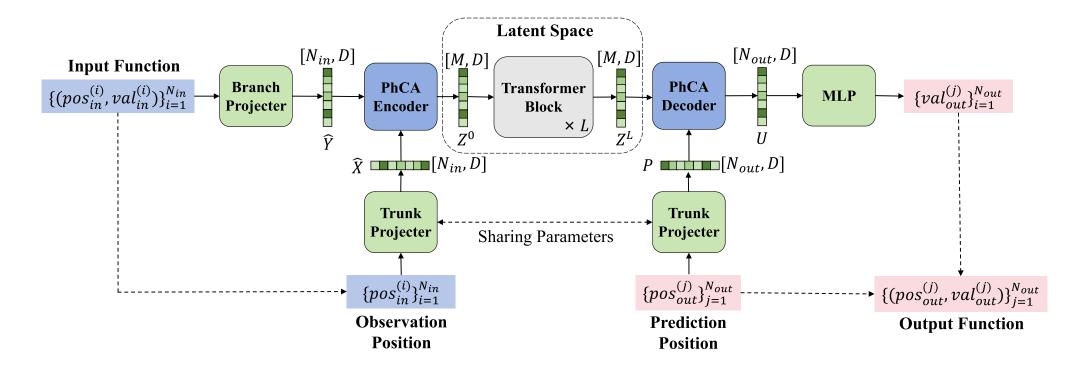
Attention (Quadratic)

Galerkin-type Attention (Linear)

j-th column

 \mathbf{Z}

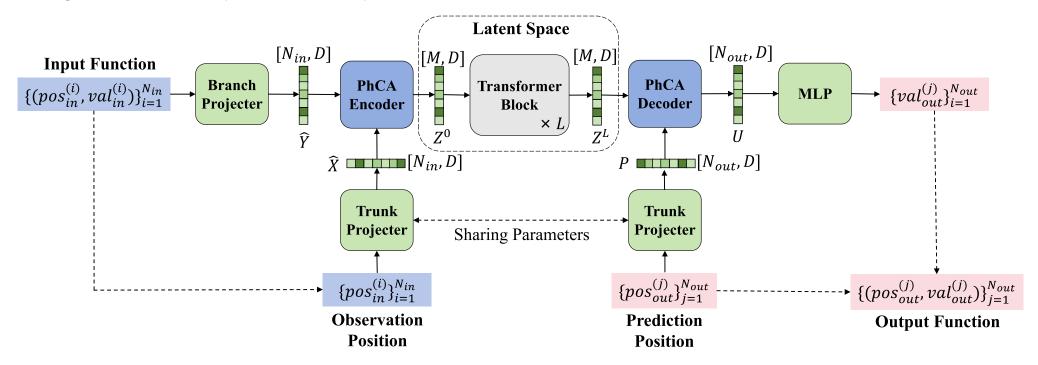
- > Motivation: Accurate, Efficient and Flexible Neural Operator
- Accurate: We achieve SOTA accuracy on 4 out of 6 forward problem benchmarks and 1 inverse problem benchmark
- □ Efficient: We reduce memory usage by 50% and speed up training 1.8 times
- □ Flexible: We decouple the observation and prediction positions, allowing infinite resolution prediction



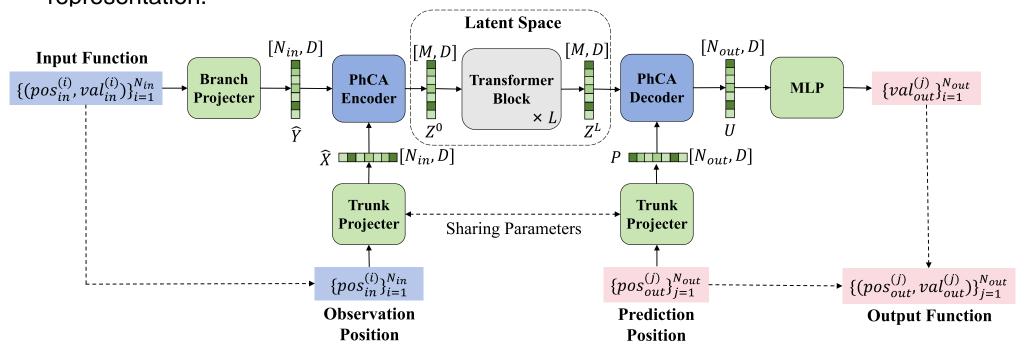
Data Format

□ Observation Sequence: $\{pos_{in}^{(i)}, val_{in}^{(i)}\}_{i=1}^{N_{in}}$, specific observation positions and the corresponding physical quantity values

■ Prediction Sequence: $\{pos_{out}^{(j)}, val_{out}^{(j)}\}_{i=j}^{N_{out}}$, positions to be predicted and the corresponding ground truth physical quantity values



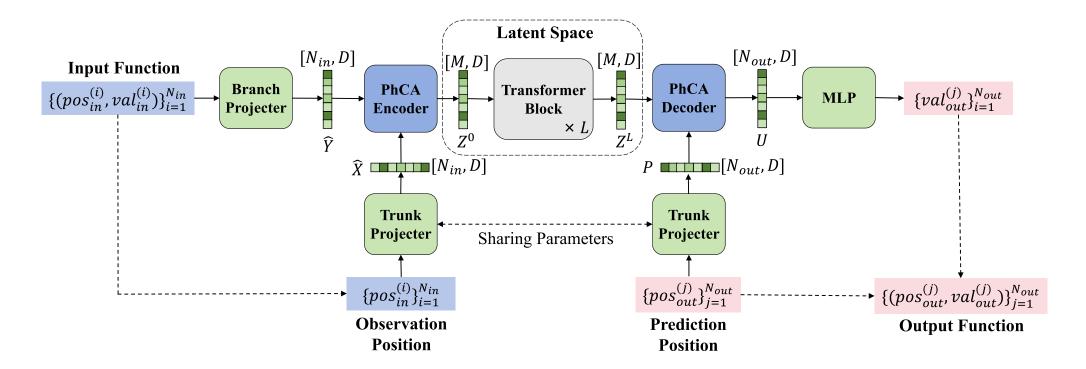
- ➤ Latent Space: Space where observed sampling points exist, with shape of $(N_{in}, d + n)$ for steady-state systems and $(N_{in}, d + n + 1)$ for time-dependent systems. *d* is the dimension of spatial coordinate and *n* is the dimension of the physical quantity.
- Second Geometric Space: Space where representations of the hypothetical sampling points exist, with shape of (M, D). *M* is the number of hypothetical sampling points and *D* is the dimension of the representation.



> 1. Embedding

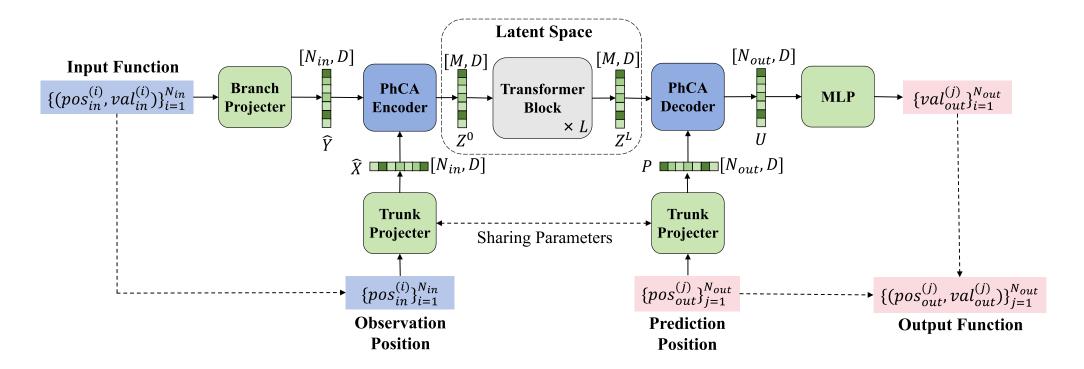
Trunk-Projector: encoding $\{pos_{in}^{(i)}\}_{i=1}^{N_{in}}$ and $\{pos_{out}^{(j)}\}_{i=1}^{N_{out}}$ to $\hat{X} \in R^{N_{in} \times D}$ and $P \in R^{N_{out} \times D}$ respectively

D Branch-Projector: encoding $\{concat(pos_{in}^{(i)}, pos_{out}^{(i)})\}_{i=1}^{N_{in}}$ to $\hat{Y} \in \mathbb{R}^{N_{in} \times D}$



Decoupling Property

- The Trunk Projector encodes only position information, enabling the decoupling the positions of observation sequence and prediction sequence
- During inference, predictions can be made for positions without physical quantity information
- □ It allows for operations such as interpolation and extrapolation (key for solving inverse problem)



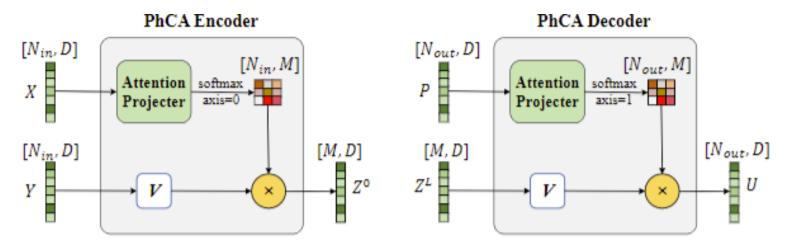
> 2. Encoding

■ We assume that the N_{in} sampling points in the geometric space can be represented as representations of *M* hypothetical sampling points in the latent space.

We let the latent space positions serve as queries, the geometric space positions as keys, and the concatenation of geometric space positions and physical quantities as values.

Physics-Cross-Attention (PhCA):

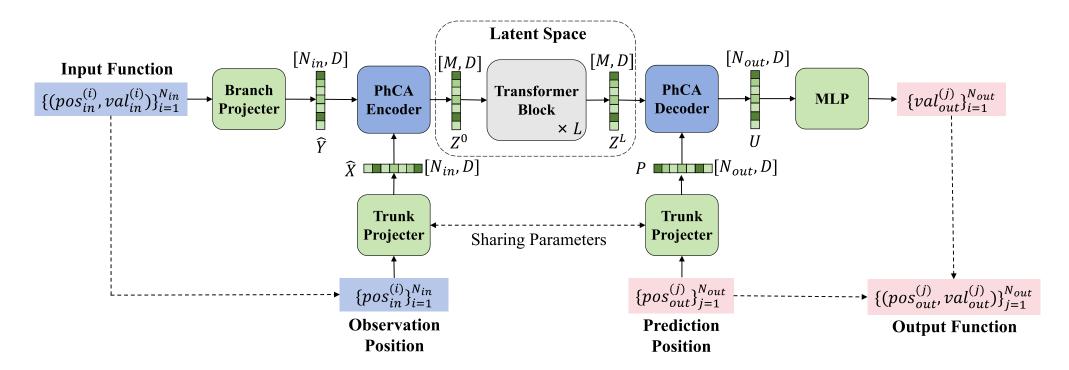
$$Z^{0} = \operatorname{softmax}\left(\frac{HW_{Q}W_{K}^{T}X^{T}}{\sqrt{D}}\right)YW_{V} = \operatorname{softmax}(W_{1}X^{T})YW_{V}, Z^{0} \in R^{M \times D}$$



> 3. Transforming

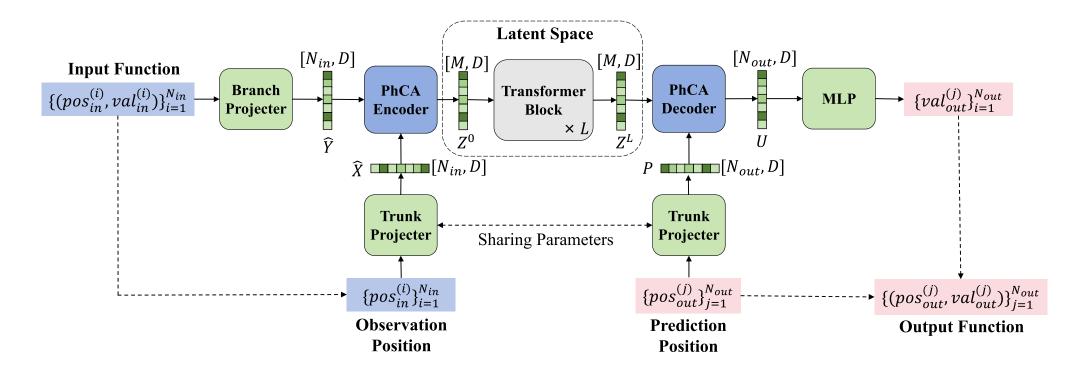
We use the self attention mechanism as a kernel integral operator and stack Transformer blocks to learn the mapping from input functions to output functions in the latent space.

> $\hat{Z}^{l} = \text{SelfAttention}(\text{LayerNorm}(Z^{l-1})) + Z^{l-1}$ $Z^{l} = \text{FeedForward}(\text{LayerNorm}(\hat{Z}^{l})) + \hat{Z}^{l}$



Reduced complexity

- □ The number of tokens (representations) in the latent space is fixes at *M*, and the computational complexity of self attention is $O(M^2D)$
- □ Compared to Transolver, there is no need for transformation in each Transformer Block, reducing the total computational complexity from $O(LMND + LM^2D)$ to $O(MND + LM^2D)$



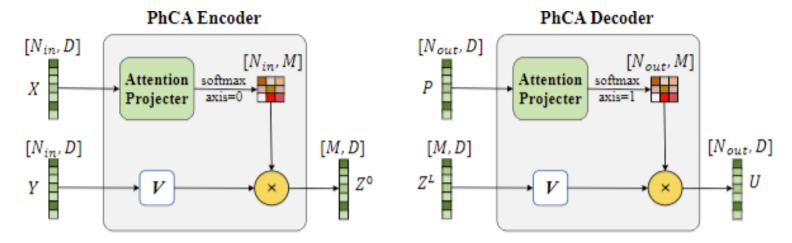
> 4. Decoding

We let the geometric space positions serve as queries, the latent space positions as keys, and the latent representations as values

The representations of predicted physical quantities are decoded to obtain the values through another MLP

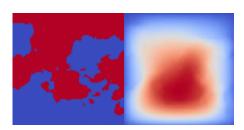
Physics-Cross-Attention (PhCA):

$$U = \operatorname{softmax}\left(\frac{PW_{Q}W_{K}^{T}H^{T}}{\sqrt{D}}\right)ZW_{V} = \operatorname{softmax}(PW_{2})YW_{V}, U \in R^{N_{out} \times D}$$

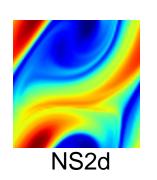


Results: Forward Problem

Model	D.C	Relative L2($\times 10^{-2}$)							
		Darcy	NS2d	Airfoil	Elasticity	Plasticity	Pipe		
FNO[14]	Ν	1.08	15.56	/	/	/	/		
Geo-FNO[44]	Ν	1.08	15.56	1.38	2.29	0.74	0.67		
F-FNO*[45]	Ν	0.75	11.51	0.60	1.85	0.27	0.68		
U-FNO*[46]	Ν	1.28	17.15	1.19	2.13	0.41	0.62		
LSM[22]	Ν	0.65	15.35	0.59	2.18	0.25	0.50		
Galerkin[20]	Ν	0.84	14.01	1.18	2.40	1.20	0.98		
OFormer[29]	Y	1.24	17.05	1.83	1.83	0.17	1.68		
GNOT*[21]	Ν	1.04	13.40	0.75	0.88	3.19	0.45		
FactFormer[30]	Ν	1.09	12.14	0.71	/	3.12	0.60		
ONO[31]	Y	0.76	11.95	0.61	1.18	0.48	0.52		
Transolver*	Ν	0.58	8.79	0.47	0.62	0.12	0.31		
LNO(Ours)	Y	0.49	8.45	0.51	0.52	0.29	0.26		
Metric	Model	Darcy	NS2d	Airfoil	Elasticity	Plasticity	Pipe		
Paras Count(M)	Transolver LNO	1.91 0.76	5.33 5.08	1.91 1.36	1.91 1.42	1.91 1.36	1.91 1.36		
Memory(GB)	Transolver LNO	: 17.11 5.75	17.17 7.58	4.49 2.47	1.48 1.39	18.41 7.16	5.94 2.89		
Time(s/epoch)	Transolver LNO	: 88.68 38.98		19.49 9.35	5.66 5.33	83.43 41.62	25.56 14.13		

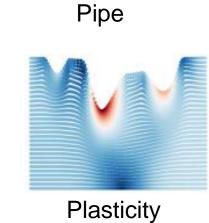


Darcy



Airfoil

Elasticity



Achieving SOTA accuracy while reducing memory usage by 50% and speeding up training 1.8 times

Results: Inverse Problem

Random Observ in Sub Doma	nin 1.0 0.8 t ^{0.6} 0.4 0.2 0.2		Domain	in 1.0 0.8 t 0.6 t 0.4 0.2 0.0	nplete Solutio Whole Doma	in u 0 0 0 0 1 1 1	.4 .6 .8 .0 .2
Completer Obs	tio 20.	% 10)% 5	5% 19	% 0.5	1%	
DeepONet[13] GNOT[21] LNO(Ours)		2.5 1.12 0.6	2% 1.3	9% 1.6	32% 3.2 52% 1.6 7% 1.13	3% 2.50	5%
Propagator Completer	G.T.	LNO		GI GI	NOT	DeepONet	
		10%	1%	10%	1%	10%	1%
DeepONet[13] GNOT[21] LNO(Ours)	7.34% 5.45% 3.73%	8.01% 6.50% 5.69%	9.38% 8.07% 7.72%	9.09% 8.04% 9.03%	10.80% 9.91% 10.98%	11.14% 10.41% 13.11%	13.87% 1 3.45% 15.50%

Achieving SOTA as both completer and propagator. Infinite resolution prediction.

Thank You! wangtian2022@ia.ac.cn wangchuang@ia.ac.cn

