

Latent Neural Operator for Solving Forward and Inverse PDE Problems

Tian Wang Institute of Automation, **Chinese Academy of Sciences** School of Artificial Intelligence, University of Chinese Academy of Sciences wangtian2022@ia.ac.cn

Chuang Wang* Institute of Automation, **Chinese Academy of Sciences** School of Artificial Intelligence, University of Chinese Academy of Sciences wangchuang@ia.ac.cn

Background: Concept of PDE

➢ **Forward Problem**

 Definition: given the coefficients, initial condition (IC) and boundary condition (BC), obtain the solution

Applications: material property prediction, weather forecasting, industrial simulation

➢ **Inverse Problem**

D Definition:

(1) System Identification: given partially observed solution, obtain the coefficients

(2) Boundary Inference: given partially observed solution,

obtain the IC and BC

Applications: geological exploration, pollution detection

 $L_a(u(x,t)) = 0$ $x,t \in D \times [0,T]$ $IC: u(x,t) = g(x), t = 0$ $BC: u(x,t) = h(x,t), x \in \partial D$

Background: Application of PDE

Material Property Prediction Weather Forecasting Industrial Simulation Geological Exploration

Background: Neural Operator and Transformer

Z

- ➢ **Motivation:** Accurate, Efficient and Flexible Neural Operator
- Accurate: We achieve SOTA accuracy on 4 out of 6 forward problem benchmarks and 1 inverse problem benchmark
- \Box Efficient: We reduce memory usage by 50% and speed up training 1.8 times
- Flexible: We decouple the observation and prediction positions, allowing infinite resolution prediction

➢ **Data Format**

O Observation Sequence: $\{pos_{in}^{(i)}, val_{in}^{(i)}\}$ ${}^{(i)}_{in} {}^{N_{in}}_{i=1}$, specific observation positions and the corresponding physical quantity values

 \Box Prediction Sequence: ${pos_{out}^{(j)}}, val_{out}^{(j)}\}^{N_{out}}_{i=j}$, positions to be predicted and the corresponding ground truth physical quantity values

- \triangleright **Latent Space**: Space where observed sampling points exist, with shape of $(N_{in}, d + n)$ for steady-state systems and $(N_{in}, d + n + 1)$ for time-dependent systems. d is the dimension of spatial coordinate and n is the dimension of the physical quantity.
- ➢ **Geometric Space**: Space where representations of the hypothetical sampling points exist, with shape of (M, D) . M is the number of hypothetical sampling points and D is the dimension of the representation.

➢ **1. Embedding**

□ Trunk-Projector: encoding ${pos_{in}^{(i)}}_{i=1}^{N_{in}}$ and ${pos_{out}^{(j)}}_{j=1}^{N_{out}}$ to $\hat{X} \in R^{N_{in} \times D}$ and $P \in R^{N_{out} \times D}$ respectively

 \Box Branch-Projector: encoding $\{concat(pos_{in}^{(i)}, pos_{out}^{(i)})\}_{i=1}^{N_{in}}$ to $\hat{Y} \in R^{N_{in} \times D}$

➢ **Decoupling Property**

- The Trunk Projector encodes only position information, enabling the decoupling the positions of observation sequence and prediction sequence
- During inference, predictions can be made for positions without physical quantity information
- \Box It allows for operations such as interpolation and extrapolation (key for solving inverse problem)

➢ **2. Encoding**

 \blacksquare We assume that the N_{in} sampling points in the geometric space can be represented as representations of M hypothetical sampling points in the latent space.

 \Box We let the latent space positions serve as queries, the geometric space positions as keys, and the concatenation of geometric space positions and physical quantities as values.

Physics-Cross-Attention (PhCA):

$$
Z^{0} = \text{softmax}\left(\frac{HW_{Q}W_{K}^{T}X^{T}}{\sqrt{D}}\right)YW_{V} = \text{softmax}(W_{1}X^{T})YW_{V}, Z^{0} \in R^{M \times D}
$$

➢ **3. Transforming**

■ We use the self attention mechanism as a kernel integral operator and stack Transformer blocks to learn the mapping from input functions to output functions in the latent space.

> $\hat{Z}^l = \text{SelfAttention}(\text{LayerNorm}(Z^{l-1})) + Z^{l-1}$ $Z^l = \text{FeedForward}(\text{LayerNorm}(\hat{Z}^l)) + \hat{Z}^l$

➢ **Reduced complexity**

- \Box The number of tokens (representations) in the latent space is fixes at M, and the computational complexity of self attention is $O(M^2D)$
- □ Compared to Transolver, there is no need for transformation in each Transformer Block, reducing the total computational complexity from $O(LMND + LM^2D)$ to $O(MND + LM^2D)$

➢ **4. Decoding**

 \Box We let the geometric space positions serve as queries, the latent space positions as keys, and the latent representations as values

■ The representations of predicted physical quantities are decoded to obtain the values through another MLP

Physics-Cross-Attention (PhCA):

$$
U = \text{softmax}\left(\frac{PW_QW_K^TH^T}{\sqrt{D}}\right)ZW_V = \text{softmax}(PW_2)YW_V, U \in R^{N_{out} \times D}
$$

Results: Forward Problem

Airfoil

Elasticity Plasticity

Pipe

Achieving SOTA accuracy while reducing memory usage by 50% and speeding up training 1.8 times

Results: Inverse Problem

Achieving SOTA as both completer and propagator. Infinite resolution prediction.

Thank You! wangtian2022@ia.ac.cn wangchuang@ia.ac.cn

