

A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning

State Key Laboratory for Novel Software Technology, Nanjing University, China

² National Institute of Healthcare Data Science, Nanjing University, China

Introduction Model Why do we need a knowledge graph (KG) foundation model? We propose a KG foundation model. Knowledge Graph In the fields of NLP and CV, there have been many foundation models that can **Prompt graph generation** be used for diverse corpora. Query: Given a query and its corresponding KG, we (felix pie, player However, existing KG reasoning methods have to develop, train and store extract prompt graphs as context for the query in league, ?) separate models for different KGs. relation "player in league". The entities and relations in the prompt graphs are mapped to the Is it possible to train a model that works across all KGs? unified unified tokens tokenizer extraction Yes! We propose a KG foundation model to achieve this goal. **Prompt graph encoding** player in league [1] NBA In this paper, we propose KG-ICL, a KG foundation model. We employ a graph neural network to encode First, we construct prompt graphs as contexts. the prompt graph and extract the relation representations as the prompts. Then, we encode prompt graphs to obtain prompt embeddings. Lakers **Knowledge graph reasoning** Finally, we encode the KG and score candidate entities. Then we use the prompts to initialize the What can KG-ICL do? representations of entities and relations in the teammate [0] Kobe Reason on any KG without fine-tuning KG. After KG encoding, we score the candidate Bryant^[1, 1] entities based on their embeddings in the final Apply to any static or dynamic KGs (transductive & inductive) \succ layer. (A) Prompt graph generation Outperforms Supervised-SOTA baselines on 43 datasets

Any questions, please email to <u>yncui.nju@gmail.com</u>

Yuanning Cui¹, Zequn Sun¹, Wei Hu^{1, 2}

Experiments

Pre-training

3 source datasets (FB V1, NELL V1 and CoDEx-small).

Evaluation

16 transductive KGs, 14 inductive KGs and 13 fully-inductive KGs.

Results on transductive datasets

Datasets	Supervised SOTA ULTRA pre-train			KG-ICI	L pre-train	ULTRA finetune		KG-ICL finetune		
2 uuseus	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
AristoV4	0.311	0.447	0.182	0.282	0.203	0.306	0.343	0.496	0.313	0.480
CoDEx-small	0.473	0.663	0.472	0.667	0.465	0.654	0.490	0.686	0.479	0.662
CoDEx-medium	0.352	0.490	0.372	0.525	0.330	0.474	0.372	0.525	0.402	0.565
CoDEx-large	0.345	0.473	0.338	0.469	0.261	0.376	0.343	0.478	0.388	0.508
ConceptNet100K	0.320	0.553	0.082	0.162	0.249	0.416	0.310	0.529	0.371	0.584
DBpedia100K	0.306	0.418	0.398	0.576	0.390	0.541	0.436	0.603	0.455	0.604
FB15k-237	0.415	0.599	0.368	0.564	0.359	0.541	0.368	0.564	0.376	0.538
FB15k-237-10	0.219	0.337	0.248	0.398	0.274	0.433	0.254	0.411	0.260	0.416
FB15k-237-20	0.247	0.391	0.272	0.436	0.285	0.454	0.274	0.445	0.284	0.456
FB15k-237-50	0.293	0.458	0.324	0.526	0.329	0.520	0.325	0.528	0.324	0.499
Hetionet	0.257	0.403	0.257	0.379	0.260	0.371	0.399	0.538	0.269	0.402
NELL-995	0.543	0.651	0.406	0.543	0.532	0.653	0.509	0.660	0.534	0.672
NELL23K	0.253	0.419	0.239	0.408	0.317	0.532	0.268	0.450	0.329	0.552
WD-singer	0.393	0.500	0.382	0.498	0.470	0.582	0.417	0.526	0.493	0.599
WN18RR	0.551	0.666	0.480	0.614	0.455	0.527	0.480	0.614	0.536	0.637
YAGO3-10	0.563	0.708	0.451	0.615	0.352	0.503	0.557	0.710	0.545	0.688
Average	0.351	0.493	0.396	0.557	0.442	0.606	0.421	0.590	0.473	0.638

Source code: <u>https://github.com/nju-websoft/KG-ICL</u>

Results on inductive and fully-inductive datasets

tasets	Supervised SOTA		ULTRA pre-train		KG-ICL pre-train		ULTRA finetune		KG-ICL finetune	
	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
V1	0.457	0.589	0.498	0.656	0.520	0.678	0.509	0.670	0.531	0.700
V2	0.510	0.672	0.512	0.700	0.565	0.749	0.524	0.710	0.568	0.768
V3	0.476	0.637	0.491	0.654	0.535	0.695	0.504	0.663	0.537	0.704
V4	0.466	0.645	0.486	0.677	0.513	0.699	0.496	0.684	0.525	0.706
PC-large	0.070	0.146	0.290	0.424	0.288	0.412	0.308	0.431	0.295	0.411
PC-small	0.130	0.251	0.302	0.443	0.288	0.446	0.303	0.453	0.316	0.473
LL V1	0.637	0.866	0.785	0.913	0.693	0.915	0.757	0.878	0.841	0.995
LL V2	0.419	0.601	0.526	0.707	0.644	0.835	0.575	0.761	0.641	0.835
LL V3	0.436	0.594	0.515	0.702	0.613	0.792	0.563	0.755	0.631	0.799
LL V4	0.363	0.556	0.479	0.712	0.590	0.791	0.469	0.733	0.594	0.802
N V1	0.741	0.826	0.648	0.768	0.733	0.838	0.685	0.793	0.762	0.827
N V2	0.704	0.798	0.663	0.765	0.696	0.783	0.679	0.779	0.721	0.787
N V3	0.452	0.568	0.376	0.476	0.425	0.548	0.411	0.546	0.503	0.626
N V4	0.661	0.743	0.611	0.705	0.652	0.722	0.614	0.720	0.683	0.749
-25	0.223	0.371	0.388	0.640	0.396	0.656	0.383	0.635	0.434	0.694
-50	0.189	0.325	0.338	0.543	0.341	0.559	0.334	0.538	0.384	0.598
-75	0.117	0.218	0.403	0.604	0.438	0.633	0.400	0.598	0.458	0.664
-100	0.133	0.271	0.449	0.642	0.487	0.694	0.444	0.643	0.499	0.703
0	0.309	0.506	0.342	0.523	0.557	0.777	0.329	0.551	0.555	0.765
-25	0.261	0.464	0.395	0.569	0.550	0.736	0.407	0.596	0.540	0.730
-50	0.281	0.453	0.407	0.570	0.534	0.704	0.418	0.595	0.528	0.708
-75	0.334	0.501	0.368	0.547	0.452	0.673	0.374	0.570	0.446	0.681
-100	0.269	0.431	0.471	0.651	0.556	0.762	0.458	0.684	0.557	0.766
K-25	0.107	0.169	0.316	0.532	0.423	0.621	0.321	0.535	0.425	0.628
K-50	0.247	0.362	0.166	0.324	0.273	0.430	0.140	0.280	0.277	0.432
K-75	0.068	0.135	0.365	0.537	0.437	0.602	0.380	0.530	0.466	0.626
K-100	0.186	0.309	0.164	0.286	0.262	0.409	0.168	0.286	0.270	0.415