

Learning from Offline Foundation Features with Tensor Augmentations

Emir Konuk, Christos Matsoukas, Moein Sorkhei, Phitchapha Lertsiravarameth, Kevin Smith

Hypothesis

Foundation model representations are robust. We should be able to train on them directly.

Transfer learning

Transfer learning

Linear probing

Efficient adaptation

Motivation

Foundation models are still there.

Can we decouple them?

LOFFTA

Tensor augmentation module, \mathcal{A}_{tensor}

Results

	Method	Size	APTOS , $\kappa \uparrow n = 3,662$	AID, Acc. \uparrow n = 10,000	DDSM, AUC \uparrow n = 10,239	ISIC , Rec. \uparrow n = 25,333	NABirds, Acc. \uparrow n = 48,562	TP , Im/sec ↑ Train (Infer.)	Mem.,Gb↓ Training
ViT-B	Frozen + linear	256	$88.6 \pm 0.3.$	90.9 ± 0.1	90.3 ± 0.2	51.7 ± 1.0	86.0 ± 0.1	153 (313)	1.8
	LOFF LOFF-TA	256	89.6 ± 0.2 90.4 ± 0.6	91.9 ± 0.3 92.3 ± 0.7	94.2 ± 1.2 94.4 ± 0.1	70.8 ± 2.1 72.8 ± 1.7	$\begin{array}{c} 83.0\pm0.1\\ 83.5\pm0.3\end{array}$	228 (236) 227 (236)	$13.2 \\ 13.2$
	LOFF + Pool LOFF-TA + Pool	512	$89.4 \pm 1.5.$ 90.5 ± 1.0	$\begin{array}{c} 93.2 \pm 0.6 \\ \textbf{93.7} \pm \textbf{0.3} \end{array}$	$\begin{array}{c} 95.3 \pm 0.5 \\ \textbf{95.5} \pm \textbf{0.1} \end{array}$	$\begin{array}{c} 74.3 \pm 1.5 \\ \textbf{77.4} \pm \textbf{0.0} \end{array}$	$\begin{array}{c} 86.2\pm0.3\\ \textbf{86.8}\pm\textbf{0.4}\end{array}$	228 (61) 227 (61)	$13.2 \\ 13.2$
	Unfrozen + linear	256	90.5 ± 0.9	93.7 ± 0.8	93.3 ± 0.9	76.8 ± 0.7	85.8 ± 0.1	77(313)	28.2
ViT-G	Frozen + linear	256	88.2 ± 0.3	92.8 ± 0.2	90.8 ± 0.6	66.4 ± 1.1	89.8 ± 0.2	14 (28)	7.2
	LOFF LOFF-TA	256	$88.6 \pm 1.5 \\ 89.9 \pm 0.4$	$93.3 \pm 0.5 \\ 94.0 \pm 0.2$	94.8 ± 1.6 95.3 ± 0.1	73.1 ± 0.5 76.0 ± 0.7	$87.4 \pm 0.2 \\ 88.5 \pm 0.2$	222 (27) 218 (27)	$\begin{array}{c} 13.2\\ 13.2 \end{array}$
	LOFF + Pool LOFF-TA + Pool	512	$\begin{array}{c} 90.3 \pm 0.6 \\ \textbf{91.8} \pm \textbf{0.3} \end{array}$	$\begin{array}{c} 94.1 \pm 0.2 \\ 94.6 \pm 0.2 \end{array}$	95.4 ± 0.4 96.3 \pm 0.6	$\begin{array}{c} 74.0 \pm 1.6 \\ \textbf{79.9} \pm \textbf{0.2} \end{array}$	$\begin{array}{c} 88.8 \pm 0.1 \\ \textbf{90.1} \pm \textbf{0.2} \end{array}$	222 (7) 218 (7)	$13.2 \\ 13.2$
	Unfrozen + linear	256	89.6 ± 0.6	96.2 ± 0.1	96.7 ± 0.2	87.3 ± 1.3	90.2 ± 0.1	6 (28)	345.2

Results

Method	APTOS , <i>κ</i> ↑ <i>n</i> = 3,662	AID , Acc. ↑ <i>n</i> = 10,000	DDSM , AUC ↑ <i>n</i> = 10,239	ISIC , Rec. ↑ <i>n</i> = 25,333	NABirds , Acc. \uparrow n = 48,562
LOFF-TA	90.4 ± 0.6	92.3 ± 0.7	94.4 ± 0.1	72.8 ± 1.7	83.5 ± 0.3
VPT <mark>[20]</mark>	89.6 ± 0.1	93.0 ± 0.1	91.4 ± 0.3	75.2 ± 1.1	85.8 ± 0.2
VPT + LOFF-TA	90.8 ± 0.4	93.1 ± 0.3	92.4 ± 0.3	79.7 ± 0.9	83.7 ± 0.1
SSF [31]	90.2 ± 0.1	92.1 ± 0.2	96.7 ± 0.6	76.4 ± 0.9	88.2 ± 0.0
SSF + LOFF-TA	91.1 ± 0.7	93.1 ± 0.0	97.2 ± 0.3	81.6 ± 1.5	85.6 ± 0.1
AdaptFormer [6]	89.6 ± 0.6	94.3 ± 0.1	91.8 ± 0.8	82.6 ± 1.0	87.1 ± 0.3
AdaptFormer + LOFF-T	A 90.0 ± 0.3	94.3 ± 0.2	93.2 ± 0.5	83.5 ± 0.3	85.3 ± 0.2

Limitations

- Slower during inference
- LOFFTA is competitive but not consistently better in performance

Conclusions

- Foundation models as fixed feature extractors
- Spatial tensor augmentations

Thank you!

ekonuk@kth.se