
A Topology-aware Graph Coarsening Framework for Continual Graph Learning

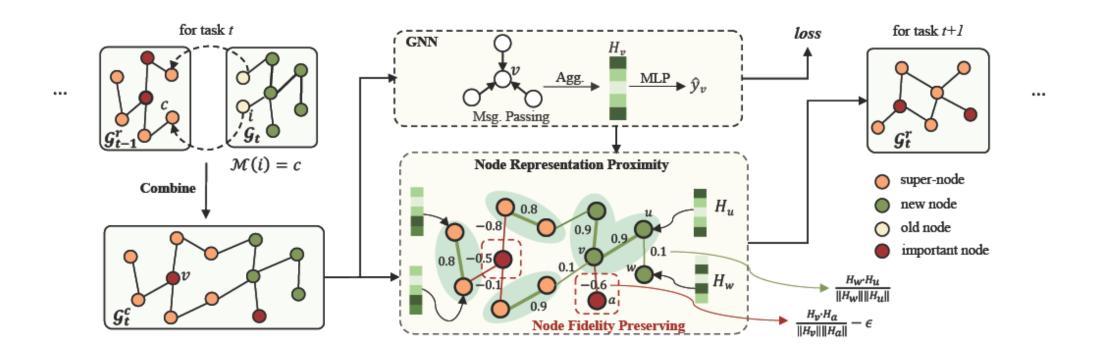
Xiaoxue Han, Zhuo Feng, Yue Ning

Stevens Institute of Technology

Catastrophic forgetting on GNN

- Graph Neural Networks (GNNs) are oblivious
- Fails to remember pre-existing knowledge in a Continual Learning Setting:
 - o The model learns a sequence of tasks incrementally
 - No access to the data from previous task
- Challenge: Preservation of knowledge from old tasks when learning the new ones

Fig. 1. The F1 score on the test task (x-axis) after GCN learns the training tasks (y-axis) on the Amazon-kindle dataset


Experience Replay

- Use a small memory buffer to save sampled data from previous task
- Relay the saved samples to the model when training new tasks
- Straight-forward and efficient

Challenges:

- Preservation of graph topological properties from previous tasks with small memory
- Capturing the inter-dependencies among tasks

TACO: A Topology-**a**ware Graph **Co**arsening Framework

Evaluation

	Kindle				DBLP				ACM			
Method	F1-AP(%) ↑		F1-AF (%) ↓		F1-AP (%) ↑		F1-AF (%) ↓		F1-AP (%) ↑		F1-AF (%) ↓	
joint train	87.21	± 0.55	0.45	± 0.25	86.33	± 1.38	0.77	± 0.13	75.35	± 1.49	1.87	± 0.60
finetune	69.10	± 10.85	18.99	± 11.19	67.85	± 8.05	20.43	± 7.07	60.53	± 9.35	19.09	± 9.23
simple-reg EWC TWP OTG GEM ERGNN-rs ERGNN-rb ERGNN-mf DyGrain IncreGNN SSM SSRM	68.80 77.08 78.90 69.01 76.08 77.63 75.87 77.28 69.14 69.45 78.99 77.37	$\begin{array}{l} \pm \ 10.02 \\ \pm \ 8.37 \\ \pm \ 4.71 \\ \pm \ 10.55 \\ \pm \ 6.70 \\ \pm \ 3.61 \\ \pm \ 6.41 \\ \pm \ 5.91 \\ \pm \ 10.47 \\ \pm \ 10.34 \\ \pm \ 3.13 \\ \pm \ 4.06 \end{array}$	18.21 10.87 8.99 18.94 11.01 9.64 11.46 10.15 18.88 18.48 8.19 9.99	$\begin{array}{l} \pm\ 10.49 \\ \pm\ 8.62 \\ \pm\ 4.93 \\ \pm\ 10.79 \\ \pm\ 7.27 \\ \pm\ 4.19 \\ \pm\ 6.98 \\ \pm\ 6.31 \\ \pm\ 10.72 \\ \pm\ 10.66 \\ \pm\ 3.63 \\ \pm\ 4.55 \end{array}$	69.70 79.38 80.05 68.24 80.04 78.02 75.16 77.42 67.52 69.40 82.71 77.43	$\begin{array}{l} \pm \ 9.16 \\ \pm \ 4.86 \\ \pm \ 3.71 \\ \pm \ 10.12 \\ \pm \ 3.24 \\ \pm \ 5.79 \\ \pm \ 7.24 \\ \pm \ 5.25 \\ \pm \ 10.88 \\ \pm \ 9.60 \\ \pm \ 1.76 \\ \pm \ 5.34 \\ \end{array}$	18.69 8.85 8.23 20.12 7.90 10.08 12.85 10.64 20.83 18.92 4.20 10.66	$\begin{array}{c} \pm 8.48 \\ \pm 4.11 \\ \pm 3.28 \\ \pm 9.34 \\ \pm 2.68 \\ \pm 5.16 \\ \pm 6.54 \\ \pm 4.38 \\ \pm 10.16 \\ \pm 8.75 \\ \pm 1.26 \\ \pm 4.47 \end{array}$	61.63 66.48 65.98 61.45 67.17 64.82 63.58 64.80 61.40 61.32 68.77 64.39	$\begin{array}{l} \pm\ 10.09\\ \pm\ 6.43\\ \pm\ 7.26\\ \pm\ 9.94\\ \pm\ 4.24\\ \pm\ 7.89\\ \pm\ 8.82\\ \pm\ 8.49\\ \pm\ 9.57\\ \pm\ 9.70\\ \pm\ 2.93\\ \pm\ 7.43\\ \end{array}$	12.73 13.33 18.33 11.69 14.43	$\pm 6.26 \pm 6.94 \pm 9.86$
CaT DeLoMe TAC©	75.12 76.93 82.97	$\pm 4.01 \\ \pm 3.83 \\ \pm 2.05$	11.83 10.16 4.91	$\pm 4.22 \pm 4.68 \pm 1.90$	76.24 77.27 84.60	$\pm 3.78 \pm 2.85 \pm 2.01$	9.06 8.01 2.51	$\pm 3.14 \pm 2.16 \pm 1.03$	63.72 64.54 70.96	$\pm 2.21 \pm 2.42 \pm 2.68$	11.86 10.75 8.02	$\pm 2.32 \pm 2.04 \pm 2.33$
p-value	< 0.0001		< 0.0001		0.002		<0.0001		0.005		0.02	

Average performance:

$$AP = \frac{1}{T} \sum_{j=1}^{T} a_{T,j}$$

Average forgetting:

$$AF = \frac{1}{T} \sum_{j=1}^{T} \max_{l=\{1,\dots,T\}} a_{l,j} - a_{T,j}$$

Contributions

- A dynamic graph coarsening framework to effectively perverse graph topology information.
- An efficient graph coarsening method.
- Extensive evaluations on real-world datasets.

More information

Please check out the paper for more details of our methods, results, and ablation studies. Also, feel free to play with the code.

