Efficient Reinforcement Learning by Discovering Neural Pathways NeurIPS 2024

Samin Yeasar Arnob ^{1,2}, Riyasat Ohib ³, Sergey Plis ⁴, Amy Zhang ⁵, Alessandro Sordoni ⁶, Doina Precup ^{1,2}

McGill University ¹, Mila Quebec Al Institute ², Georgia Institute of Technology ³, Georgia State University ⁴, University of Texas, Austin ⁵, Microsoft Research ⁶

Motivation:

- The human brain:
 - continuously learns new things without catastrophic forgetting due to its plasticity [1, 2, 3, 4]
 - strengthens more frequently used synaptic connections and eliminates synaptic connections that are rarely used, a phenomenon called synaptic pruning [5]
 - **creates neural pathways to transmit information**; different neural pathways [6, 7] are used to complete different tasks.
- We propose a **novel approach** in deep reinforcement learning to form **distinct neural pathways for different tasks** within one neural network.

[1] Karl Zilles. **Neuronal plasticity as an adaptive property of the central nervous system**. Annals of Anatomy-Anatomischer Anzeiger, 174(5):383–391, 1992. [2] Daniel Drubach. **The brain explained**. Pearson, 2000.

[3] Jill Sakai. Core concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings of the National Academy of Sciences, 117(28):16096–16099, 2020. ISSN 0027-8424. doi: 10.1073/pnas.2010281117. URL https://www.pnas.org/ content/117/28/16096.

[4] Lucy B. Rorke. Central Nervous System Plasticity and Repair. Journal of Neuropathology & Experimental Neurology, 44(5):530–530, 09 1985. ISSN 0022- 3069. doi: 10.1097/00005072-198509000-00008. URL https://doi.org/10.1097/ 00005072-198509000-00008.

[5] Irwin Feinberg. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of psychiatric research, 17(4):319–334, 1982.

[6] Peter H Rudebeck, Mark E Walton, Angharad N Smyth, David M Bannerman, and Matthew FS Rushworth. Separate neural pathways process different decision costs. Nature neuroscience, 9(9): 1161–1168, 2006.

[7] Tomáš Paus, Alex Zijdenbos, Keith Worsley, D Louis Collins, Jonathan Blumenthal, Jay N Giedd, Judith L Rapoport, and Alan C Evans. Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283(5409):1908–1911, 1999.

Objective:

- We want to maximize learning capacity of parameter space for RL agent.
- Our approach aims to identify the important connections among the neurons in a deep neural network that allow accomplishing a specific task.

Background:

- We leverage insights from recent *lottery ticket hypothesis* **[1, 2, 3, 4]** literature to construct *task-specific neural pathways* in multitask reinforcement learning in both online and offline settings.
- Scoring function [2] based on *connection sensitivity*:

$$\mathbf{S}(heta_q) = \lim_{\epsilon o 0} \left| rac{\mathcal{L}(heta_0) - \mathcal{L}(heta_0 + \epsilon \delta_q)}{\epsilon}
ight| = \left| heta_q rac{\partial \mathcal{L}(heta_0)}{\partial heta_q}
ight|$$

- We measure the effect of weight θ_q on loss function $\mathcal{L}(\theta_0)$
- δ_q is a vector whose q^{th} element equals θ_q and all other elements are 0.

^[1] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks, 2019.

^[2] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

^[3] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. **Pruning neural networks without any data by iteratively conserving synaptic flow**. CoRR, abs/2006.05467, 2020. URL <u>https://arxiv.org/abs/2006.05467</u>.

^[4] Chaoqi Wang, Guodong Zhang, and Roger Grosse. **Picking winning tickets before training by preserving gradient flow**. arXiv preprint arXiv:2002.07376, 2020a.

Task-specific Subnetwork

 \mathcal{T}_k : selects top k parameters

m: mask allows training task-specific subnetwork

Efficient Reinforcement Learning by Discovering Neural Pathways

Neural Pathway

- Neural Pathway (NP):
 - Let's define a neural network as f(x, heta)
 - Apply mask m to compute neural pathway as f(x, heta * m)
- For Actor-Critic Network:
 - Actor-Network: $\pi(\theta)$
 - Critic-Network: $Q(\phi)$
 - For n^{th} task compute two masks:
 - $\circ \hspace{0.2cm} m_{ heta}^n$, m_{ϕ}^n
 - \circ Actor-network: $\pi(heta * m_{ heta}^n)$
 - \circ Critic-Network: $Q(\phi * m_{\phi}^n)$

Data Adaptive Pathway Discovery (DAPD)

Scoring Function:
$$\mathbf{S}(heta_q,D) = \left| heta_q rac{\partial \mathcal{L}(heta_0;D)}{\partial heta_q}
ight|$$

Adaptive learning:

1. Use the most recent data
$$D^{t-L:t} = ig\{(s,a,s',r)ig\}_{l=0}^L$$

 $\mathbf{S^j}(heta, D^{t-L:t})$

2. Stabilize parameter space update with K moving average: $\frac{1}{K} \sum_{k=0}^{K-1} \mathbf{S}^{j-k}(\theta, D^{t-L:t})$

Updated Mask:

$$m = \mathcal{T}_k \Big(rac{1}{K} \sum_{k=0}^{K-1} \mathbf{S}^{j-k}(heta, D^{t-L:t}) \Big)$$

Efficient Reinforcement Learning by Discovering Neural Pathways

Empirical Proof of Many Lottery Subnetwork Hypothesis:

- DAPD switch in-between multiple subnetwork during *warm-up* phase.
- It is essential to *Freeze* the sub-network once reached a *good-performance* (episodic reward, a hyper-parameter).
- Fig 2 supports our hypothesis:
 - There exists many sub-networks, which when trained separately can reach to almost equivalent performance.

Data Adaptive Pathway Discovery (DAPD)

We show the importance of having a having **warm-up** and **freeze**, **two stages** of training in Fig (a).

Warm-up and Freeze:

- *Warm-up* : apply the adaptive mask
- *Freeze*: Keep the mask fixed for rest of the training once achieved a *threshold performance*, a hyper-parameter

Multitask setup:

- *Warm-up*: update the mask and corresponding weights independently
- *Freeze*: Fix the mask and merge of the weights.
- Compute gradient average for overlapped mask

Experimental Setup:

- Environments:
 - Continuous Control:
 - MuJoCo [1]: HalfCheetah, Walker2d, Ant, Hopper
 - MetaWorld [2]: MT10 tasks
- Training step: 1 million gradient step.
- Evaluation:
 - For MuJoCo we compute **episodic return**
 - For MetaWorld we compute the **success-rate** of task completion
 - For Offline RL setup we also report **normalized score [3]** w.r.t. training data performance:

normalized score = $\left(\frac{\text{score - random score}}{\text{expert score - random score}} * 100\right)$.

- We report the mean and standard-deviation over 5 seeds.
- 1. E Todorov Mujoco: A physics engine for model-based control, 2012
- 2. Tianhe Yu, Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, 2019
- 3. Justin Fu, D4RL: Datasets for Deep Data-Driven Reinforcement Learning, 2021

(a)MuJoCo

(b) MetaWorld

MuJoCo Benchmark:

- We compare DAPD at 95% sparsity with Dense network along with *topology based sparse methods* for RL RiGL**[1]** and Rlx2 **[2]** on MuJoCo tasks.
 - Topology based sparse method, randomly grow and prune fixed % of parameters
 - Very fragile to specific network sparsity ratio of actor and critic network
- We present the average episodic return over the last 10 evaluations over 5 seeds after 1 million training steps.
- We show DAPD exceeds other sparse training as well as the Dense network performance

Environment	SAC-Dense	RiGL	Rlx2	SAC-DAPD
HalfCheetah-v2	8568.1 ± 1043.56	4043.95 ± 467.88	2333.31 ± 1241.16	$\textbf{9028.02} \pm \textbf{276.31}$
Walker2d-v2	2972.49 ± 1691.47	260.3 ± 31.16	518.45 ± 205.16	$\textbf{3846.3} \pm \textbf{459.82}$
Hopper-v2	3228.5 ± 301.88	174.89 ± 8.12	198.29 ± 10.39	3359.88 ±46.57
Ant-v2	3538.22 ± 654.76	954.2 ± 14.4	963.68 ± 6.96	$\textbf{3916.65} \pm \textbf{502.82}$

1. Laura Graesser et al. The State of Sparse Training in Deep Reinforcement Learning. 2022.

2. Yiqin Tan et al. RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch. 2023

Efficient Reinforcement Learning by Discovering Neural Pathways

Performance Comparison

Efficient Reinforcement Learning by Discovering Neural Pathways

MetaWorld Benchmark:

- We compare performance of DAPD in MetaWorld multitask benchmark with various multitask algorithms.
 - We report the performance in following Table (a)
- We share the normalized performance and corresponding energy consumption in Fig (b)
 - DAPD can potentially safe 20x energy consumption, under the assumption that compute energy is proportional to FLOP counts.

Experiments	SAC-DAPD	SAC-Dense	PCGrad	SM	SAC+ME	CARE
MT10 tasks	77 ± 1.3	49.0 ± 7.3	72.0 ± 2.2	73 ± 4.3	74 ± 4.3	$\textbf{84} \pm \textbf{5.1}$
Parameter Counts	17k	340k	340k	135k	344k	486k
FLOPs	16.9k	339K	339K	78K	363K	368K
Energy Consumption, Jules	k	20k	20k	20k	21.02k	21.25k

(a) MetaWorld Benchmark

(b) Normalized Performance and Energy Consumption

Efficient Reinforcement Learning by Discovering Neural Pathways

Offline Benchmark:

Experiment	NPF		Offline MT		Offline MHMT	
	BCQ	IQL	BCQ	IQL	BCQ	IQL
MT-10 tasks	100 ± 0.0	$\textbf{97.3} \pm \textbf{7.17}$	81.5 ± 24.15	79.1 ± 26.81	95.9 ± 10.44	96.5 ± 7.10
Parameter Counts	67k	54k	1.34M	1.01M	1.38M	1.12M
FLOPs	29.4K	53.6k	589K	1073K	629k	1128k
Energy Consumption, Joules	k	k	20k	20k	21.25k	21.02k

- We compare the performance of NPF with Multitask (MT) and Multihead-Multitask (MHMT) baselines in BCQ [2], IQL[3] offline RL algorithms in Table (a)
 - We provide the mean and standard deviation computer over 5 seeds
- We further compare the performance for BCQ-NPF under (b) mixed datasets and (c) varying number of training sample
- The results show NPF to be robust in performance.

- 1. Single-Shot Pruning for Offline Reinforcement Learning, S Y Arnob, R Ohib, S Plis, D Precup, 2021
- 2. Off-Policy Deep Reinforcement Learning without Exploration, Scott Fujimoto, David Meger, Doina Precup, 2019
- 3. Offline Reinforcement Learning with Implicit Q-Learning, Ilya Kostrikov, Ashvin Nair, Sergey Levine, 2021

Efficient Reinforcement Learning by Discovering Neural Pathways

(a) MetaWorld Benchmark

Empirical Proof of generalization:

Algorithmic Generalization:

• DAPD is effective with PPO in continuous control tasks.

 To prove domain generalization, we show performance of DQN in Atari domain

Environment	DQN-dense (mean \pm std)	DQN DAPD (mean \pm std)
DemonAttack-v4	17670.33 ± 2829.91	$\textbf{20803.33} \pm \textbf{3273.07}$
BreakoutNoFrameskip-v4	346.66 ± 12.21	$\textbf{384.0} \pm \textbf{15.80}$
PongNoFrameskip-v4	$\textbf{20.36} \pm \textbf{0.58}$	19.09 ± 0.77

We summarize our contributions as follows:

- We showcase how to train multiple neural pathways for multi-task RL where the objective is to improve energy efficiency and reduce the carbon footprint associated with both offline and online RL training.
- We introduce **Data Adaptive Pathway Discovery (DAPD)**, which **leverages network sensitivity** to adjust pathways in response to the **data distribution shifts encountered in online RL**. This capability enables us to **identify pathways at high levels of sparsity** and surpass competitive sparse training baselines.
- We demonstrate **superior sample efficiency** and **performance** in both single and multi-task RL compared to dense counterpart. The sparsity in the model induces **20x increase in energy efficiency** compared to alternative approaches, achieved through FLOP count reduction and the utilization of Sparse Matrix Multiplication (SpMM).
- Please check out our paper for more experimental results and discussion.