Efficient Reinforcement Learning by Discovering Neural Pathways NeurIPS 2024

Samin Yeasar Arnob 1,2, Riyasat Ohib 3, Sergey Plis ⁴ , Amy Zhang 5, Alessandro Sordoni ⁶ , Doina Precup 1,2

McGill University 1 , Mila Quebec AI Institute 2 , Georgia Institute of Technology 3 , Georgia State University 4 , University of Texas, Austin 5 , Microsoft Research 6

Motivation:

- The human brain:
	- *continuously learns* new things without catastrophic forgetting due to its *plasticity* [**1, 2, 3, 4**]
	- *strengthens* more frequently used synaptic connections and eliminates synaptic connections that are rarely used, a phenomenon called *synaptic pruning* [**5**]
	- *creates neural pathways to transmit information*; different neural pathways [**6, 7**] are used to complete different tasks.
- We propose a **novel approach** in deep reinforcement learning to form **distinct neural pathways for different tasks** within one neural network.

^[1] Karl Zilles. **Neuronal plasticity as an adaptive property of the central nervous system**. Annals of Anatomy-Anatomischer Anzeiger, 174(5):383–391, 1992. [2] Daniel Drubach. **The brain explained**. Pearson, 2000.

^[3] Jill Sakai. Core concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings of the National Academy of Sciences, 117(28):16096–16099, 2020. ISSN 0027-8424. doi: 10.1073/pnas.2010281117. URL https://www.pnas.org/ content/117/28/16096.

^[4] Lucy B. Rorke. **Central Nervous System Plasticity and Repair**. Journal of Neuropathology & Experimental Neurology, 44(5):530–530, 09 1985. ISSN 0022- 3069. doi: 10.1097/00005072-198509000-00008. URL https://doi.org/10.1097/ 00005072-198509000-00008.

^[5] Irwin Feinberg. **Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?** Journal of psychiatric research, 17(4):319–334, 1982. [6] Peter H Rudebeck, Mark E Walton, Angharad N Smyth, David M Bannerman, and Matthew FS Rushworth. **Separate neural pathways process different decision costs**. Nature neuroscience, 9(9): 1161–1168, 2006.

^[7] Tomáš Paus, Alex Zijdenbos, Keith Worsley, D Louis Collins, Jonathan Blumenthal, Jay N Giedd, Judith L Rapoport, and Alan C Evans. **Structural maturation of neural pathways in children and adolescents: in vivo study**. Science, 283(5409):1908–1911, 1999.

Objective:

- We want to maximize learning capacity of parameter space for RL agent.
- Our approach aims to identify the important connections among the neurons in a deep neural network that allow accomplishing a specific task.

Background:

- We leverage insights from recent *lottery ticket hypothesis* **[1, 2, 3, 4]** literature to construct *task-specific neural pathways* in multitask reinforcement learning in both online and offline settings.
- Scoring function **[2]** based on *connection sensitivity*:

$$
\mathbf{S}(\theta_q) = \lim_{\epsilon \rightarrow 0} \left| \frac{\mathcal{L}(\theta_0) - \mathcal{L}(\theta_0 + \epsilon \delta_q)}{\epsilon} \right| = \left| \theta_q \frac{\partial \mathcal{L}(\theta_0)}{\partial \theta_q} \right|
$$

- We measure the effect of weight θ_a on loss function $\mathcal{L}(\theta_0)$
- δ_q is a vector whose q^{th} element equals θ_q and all other elements are 0.

^[1] Jonathan Frankle and Michael Carbin. **The lottery ticket hypothesis: Finding sparse, trainable neural networks**, 2019.

^[2] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. **Snip: Single-shot network pruning based on connection sensitivity**. arXiv preprint arXiv:1810.02340, 2018.

^[3] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. **Pruning neural networks without any data by iteratively conserving synaptic flow**. CoRR, abs/2006.05467, 2020. URL [https://arxiv.org/abs/2006.05467.](https://arxiv.org/abs/2006.05467)

^[4] Chaoqi Wang, Guodong Zhang, and Roger Grosse. **Picking winning tickets before training by preserving gradient flow**. arXiv preprint arXiv:2002.07376, 2020a.

Task-specific Subnetwork

 \mathcal{T}_k : selects top k parameters

 m : mask allows training task-specific subnetwork

Efficient Reinforcement Learning by Discovering Neural Pathways

Neural Pathway

- Neural Pathway (NP):
	- Let's define a neural network as $f(x, \theta)$
	- Apply mask m to compute neural pathway as $f(x, \theta * m)$
- For Actor-Critic Network:
	- Actor-Network: $\pi(\theta)$
	- Critic-Network: $Q(\phi)$
	- For n^{th} task compute two masks:
		- $\mathfrak{o}~ m^n_{\theta}$, m^n_{ϕ}
		- Actor-network: $\pi(\theta * m_{\theta}^n)$
		- Critic-Network: $Q(\phi*m_\phi^n)$

Data Adaptive Pathway Discovery (DAPD)

Scoring Function:
$$
\mathbf{S}(\theta_q, D) = \left| \theta_q \frac{\partial \mathcal{L}(\theta_0; D)}{\partial \theta_q} \right|
$$

Adaptive learning:

1. Use the most recent data
$$
D^{t-L:t} = \left\{ (s, a, s', r) \right\}_{l=0}^{L}
$$

$$
\mathbf{S}^{j}(\theta, D^{t-L:t})
$$

2. Stabilize parameter space update with K moving average: $\frac{1}{K}\sum_{k=0}^{K-1}\mathbf{S}^{j-k}(\theta,D^{t-L:t})$

Updated Mask:

$$
m = \mathcal{T}_{k}\Big(\tfrac{1}{K}\sum_{k=0}^{K-1}\textbf{S}^{j-k}(\theta, D^{t-L:t})\Big)
$$

Efficient Reinforcement Learning by Discovering Neural Pathways

Empirical Proof of Many Lottery Subnetwork Hypothesis:

- DAPD switch in-between multiple subnetwork during *warm-up* phase.
- It is essential to *Freeze* the sub-network once reached a *good-performance* (episodic reward, a hyper-parameter).
- **Fig 2** supports our hypothesis:
	- **○ There exists many sub-networks, which when trained separately can reach to almost equivalent performance.**

Data Adaptive Pathway Discovery (DAPD)

We show the importance of having a having **warm-up** and **freeze**, **two stages** of training in Fig (a) .

Warm-up and Freeze:

- *Warm-up* : apply the adaptive mask
- *Freeze*: Keep the mask fixed for rest of the training once achieved a *threshold performance*, a hyper-parameter

Multitask setup:

- *Warm-up*: update the mask and corresponding weights independently
- *Freeze*: Fix the mask and merge of the weights.
- Compute *gradient average* for *overlapped mask*

Experimental Setup:

- **Environments**:
	- Continuous Control:
		- MuJoCo <a>[1]: HalfCheetah, Walker2d, Ant, Hopper
		- MetaWorld [2]: MT10 tasks
- **Training step**: 1 million gradient step.
- **Evaluation**:
	- For MuJoCo we compute **episodic return**
	- For MetaWorld we compute the **success-rate** of task completion
	- For Offline RL setup we also report **normalized score [3]** w.r.t. training data performance:

- *normalized score* = $\left(\frac{\text{score random score}}{\text{expert score random score}} * 100\right)$.
- We report the mean and standard-deviation over 5 seeds.
- 1. E Todorov Mujoco: A physics engine for model-based control, 2012
- 2. Tianhe Yu, Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, 2019
- 3. Justin Fu, D4RL: Datasets for Deep Data-Driven Reinforcement Learning, 2021

(a)MuJoCo

(b) MetaWorld

MuJoCo Benchmark:

- We compare DAPD at 95% sparsity with Dense network along with *topology based sparse methods* for RL RiGL**[1]** and Rlx2 **[2]** on MuJoCo tasks.
	- Topology based sparse method, randomly *grow* and *prune* fixed % of parameters
	- Very fragile to specific network sparsity ratio of actor and critic network
- We present the average episodic return over the last 10 evaluations over 5 seeds after 1 million training steps.
- We show DAPD exceeds other sparse training as well as the Dense network performance

1. Laura Graesser et al. The State of Sparse Training in Deep Reinforcement Learning. 2022.

2. Yiqin Tan et al. RLx2: Training a Sparse Deep Reinforcement Learning Model from Scratch. 2023

Performance Comparison

Efficient Reinforcement Learning by Discovering Neural Pathways

MetaWorld Benchmark:

- We compare performance of DAPD in MetaWorld multitask benchmark with various multitask algorithms.
	- We report the performance in following Table (a)
- We share the normalized performance and corresponding energy consumption in Fig (b)
	- DAPD can *potentially* safe **20x** energy consumption , under the assumption that *compute energy is proportional to FLOP counts.*

(a) MetaWorld Benchmark

(b) Normalized Performance and Energy Consumption

Efficient Reinforcement Learning by Discovering Neural Pathways

Offline Benchmark:

(b) (c)

 -40

 -60

10000

Algorithms

BCO-NPF

100000

50000

Training Sample Size

■ BCQ-MT **BCO-MHMT**

● Similar to supervised learning, we can determine the *lottery subnetwork* for Offline RL in a single-shot **[1]**.

- We compare the performance of NPF with Multitask (MT) and Multihead-Multitask (MHMT) baselines in BCQ **[2]**, IQL**[3]** offline RL algorithms in Table (a)
	- We provide the mean and standard deviation computer over 5 seeds
- We further compare the performance for BCQ-NPF under (b) mixed datasets and (c) varying number of training sample
- The results show NPF to be robust in performance.

Expert-Replay

(a) MetaWorld Benchmark

- 1. [Single-Shot Pruning for Offline Reinforcement Learning](https://scholar.google.at/scholar?oi=bibs&cluster=7349223643554427384&btnI=1&hl=en), S Y Arnob, R Ohib, S Plis, D Precup, 2021
- 2. Off-Policy Deep Reinforcement Learning without Exploration, Scott Fujimoto, David Meger, Doina Precup, 2019

 -40

 -60

Medium-Expert

Medium

Mixed Dataset

3. Offline Reinforcement Learning with Implicit Q-Learning, Ilya Kostrikov, Ashvin Nair, Sergey Levine, 2021

Efficient Reinforcement Learning by Discovering Neural Pathways

Empirical Proof of generalization:

Algorithmic Generalization:

● DAPD is effective with PPO in continuous control tasks.

● To prove domain generalization, we show performance of DQN in Atari domain

We summarize our contributions as follows:

- We showcase **how to train multiple neural pathways for multi-task RL** where the **objective** is to **improve energy efficiency and reduce the carbon footprint associated with both offline and online RL training.**
- We introduce **Data Adaptive Pathway Discovery (DAPD)**, which **leverages network sensitivity** to adjust pathways in response to the **data distribution shifts encountered in online RL**. This capability enables us to **identify pathways at high levels of sparsity** and surpass competitive sparse training baselines .
- We demonstrate **superior sample efficiency** and **performance** in both single and multi-task RL compared to dense counterpart. The sparsity in the model induces **20x increase in energy efficiency** compared to alternative approaches, achieved through FLOP count reduction and the utilization of Sparse Matrix Multiplication (SpMM).
- Please check out our paper for more experimental results and discussion.