

Exploiting Representation Curvature for Boundary Detection in Time Series

Yooju Shin¹ Jaehyun Park¹ Hwanjun Song¹ Susik Yoon² Jae-Gil Lee¹ Byung Suk Lee³

¹KAIST ²Korea University ³University of Vermont

Time Series Boundary Detection

- A time series is a sequence of coherent data points
- Boundaries signify class transitions in time series data
 - The shade represents each action class such as running and walking
- Boundary detection helps accurate prediction and monitoring

An Example: Human Activity Recognition Dataset

Limitation in Boundary Detection

- However, traditional methods rely on consecutive distance
- Subtle or gradual changes are often missed!
- The figure shows the density of consecutive cosine similarity
 - The large overlap indicates the challenge in accurate detection

RECURVE: Curvature-based Method

- Curvature measures how sharply the trajectory changes direction
- Curvature is computed from three representation points

- z_{t^-} , z_t , and z_{t^+} are the representation points where $t^- < t < t^+$

• Higher curvature occurs when the trajectory makes sharp turns

- Turning angle is big and consecutive distances are small

Rationale behind Curvature

- Representation learning clusters class representations as a ball
- Due to confinement, intra-seg. points show high curvature
 - In contrast, inter-seg. points do show low curvature
- Despite of similar distances, curvature still detects changes

Evaluation of RECURVE

- RECURVE is compared to three recent works using four datasets
 - Two representation learning methods are used: TPC and TNC
- It detects the closest point to true change points

Methods	LOC \downarrow (thresholding by best F1)				LOC \downarrow (thresholding by mean segment length)			
	WISDM	HAPT	mHealth	50salads	WISDM	HAPT	mHealth	50salads
RuLSIF	420.9±18.54	$108.2{\pm}0.188$	$780.0{\pm}8.580$	$184.4{\pm}1.463$	429.5±9.968	$156.0 {\pm} 0.092$	802.6±30.18	189.2 ± 1.120
KL-CPD	189.0±12.20	121.5±4.540	306.4±126.5	179.5±3.853	198.3±2.329	113.0±2.545	352.6±119.7	176.6±1.017
$TS-CP^2$	166.6±7.840	386.6±31.04	$879.4{\pm}62.57$	119.0 ± 6.712	183.1±15.13	404.2 ± 32.60	923.8±44.39	$129.4 {\pm} 5.091$
RECURVE +TPC	114.7±56.07	33.25±1.290	483.6±64.24	79.29±10.52	178.4±36.05	34.28±0.727	341.0±47.93	93.76±7.475
RECURVE +TNC	210.0±112.3	47.92±2.884	224.0±211.2	175.0±26.38	219.8±102.2	50.71±1.589	239.6±212.4	$178.8 {\pm} 20.87$

Conclusion

- We propose **RECURVE**, exploiting curvature of repr. trajectory
- RECURVE is simple and effective, used with any learned representation
- RECURVE enhances accuracy of CPD by up to 12.7% without any label

