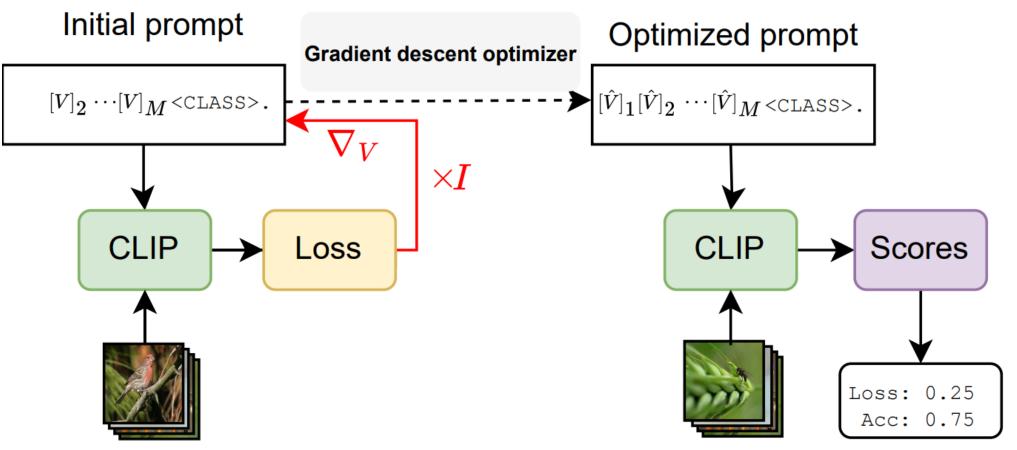
NEURAL INFORMATION IPO: Interpretable Prompt Optimization for Vision-Language Models

Yingjun Du 1*, Wenfang Sun 2*, Cees G.M. Snoek 1

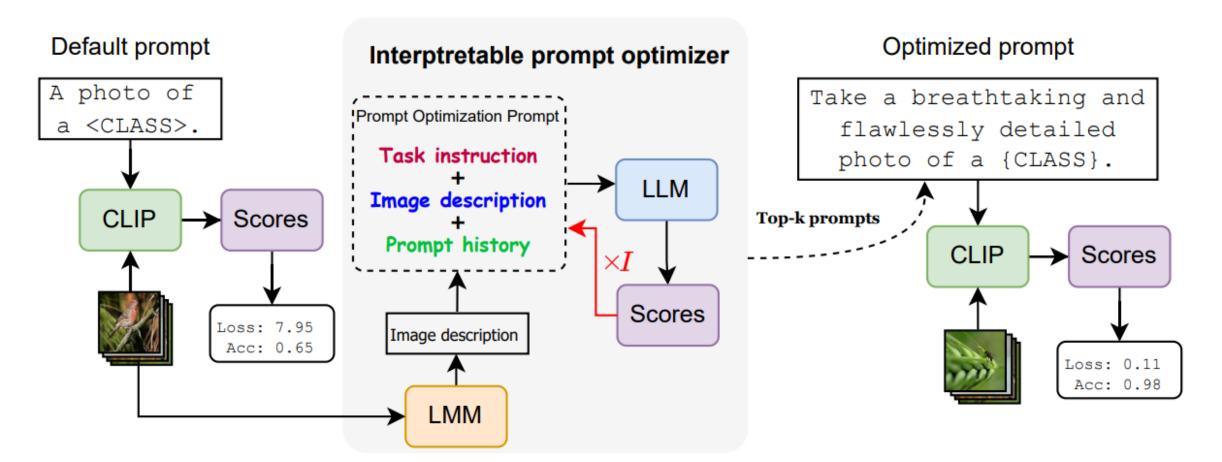
96.53 95.39 95.95


(c) Caltech 101

Prompt learning for VLM

Existing prompt optimization methods use gradient descent to learn adjustable prompts.

Overfits to training classes


Learned prompts are not human-interpretable

Gradient-based prompt optimization

IPO

- IPO uses large language models (LLMs) to dynamically generate textual prompts.
- IPO introduces a Prompt Optimization Prompt to guide LLMs and stores historical prompts with performance metrics.
- A large multimodal model (LMM) generates image descriptions to improve the interaction between text and visual modalities.

Interpretable prompt optimization

Prompt Optimization Prompt design

☐ Input

Instruction 1

You need to perform image classification on the large-scale visual recognition dataset based on visual features. Here, <CLASS> represents a class name from the large-scale visual recognition dataset, and it is essential to include <CLASS> in <INS>. Below is a description of some features of the flowers in the image:

Image descriptions

Image 0: The image showcases a close-up view of the texture on an object with distinct stripes, buttons and stitching details.

(... more image examples. .

Below are some previous prompts with their scores. The scores consist of loss and accuracy. The loss value is equal to or greater than 0, while the accuracy varies from 0 to 100.

☐ Output

Instruction 2

Below are the prompts created according to your guidelines:

Prompt history

text prompt: a photo of a <CLASS>. scores:

loss: 1.6435546875, accuracy: 54.166664123535156

text prompt:

Identify the intricate details and unique patterns of the <CLASS> texture scores: loss: 1.3935546875, accuracy: 70.83332824707031 (... more previous prompts and scores . . .)

Instruction 3

Generate a prompt different from all the prompts <INS> above, with a lower loss and higher accuracy than all the prompts <INS> above. The prompt should begin with <INS> and end with </INS>. The prompt should be concise, effective, and generally applicable to all problems above.

74.09 69.17 71.54 (b) ImageNet

CoPrompt 72.90 72.93 72.91 (f) Flowers 102

Experiments

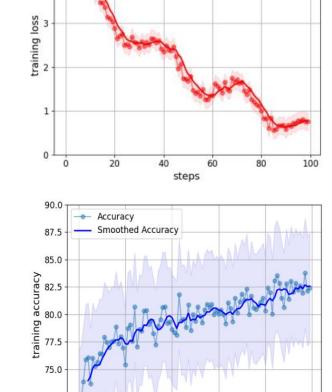
(§	g) Food	101		(h) I	FGVCA	vircraft		(i) SUN	397	
ViT-B/16	Base	Novel	Н	ViT-B/16	Base	Novel	H	ViT-B/16	Base	Novel	H
CLIP	53.24	59.90	56.37	CLIP	56.48	64.05	60.03	CLIP	70.53	77.50	73.
CoOp	60.80	47.53	53.35	CoOp	69.13	50.33	58.25	CoOp	72.50	63.57	67.
CoCoOp	58.70	52.70	55.54	CoCoOp	71.13	62.87	66.75	CoCoOp	74.73	72.80	73.
MaPLe	58.20	54.17	56.11	MaPLe	50.20	51.20	50.70	MaPLe	74.83	76.43	75.
PromptSRC	63.17	55.60	59.14	PromptSRC	73.27	67.00	70.00	PromptSRC	78.13	78.37	78.
CoPrompt	62.77	60.40	61.56	CoPrompt	59.27	51.60	55.17	CoPrompt	76.93	77.73	77.
IPO	55.45	62.47	58.75	IPO	64.97	82.13	72.54	IPO	72.43	79.35	75.
	(j) DTD (k) EuroSAT (l) UCF10			101							

Impact of LLM

Comparison with SOTA

Models	Base	Novel	Н
Phi2-2.7B	71.15	75.43	73.22
PaLM 2-L	71.32	75.93	73.55
PaLM 2-L-IT	71.13	76.16	73.56
Phi3-7B	71.43	76.68	73.96
GPT-3.5-turbo	71.76	77.00	74.29

Impact of LMM


Models	Base	Novel	Н
FUYU-8B	70.98	75.45	73.14
BLIP-2	71.95	76.52	73.16
Qwen-VL-Chat-9.6B	71.23	77.08	74.03
LLaVA-Llama-3-8B	73.17	75.24	74.19
MiniCPM-V-2-2.8B	71.76	77.00	74.29

Training loss and accuracy on ImageNet

Interpretable prompts generated by IPO

achieve unmatched

Dataset	Best Prompt
ImageNet	Take a high-quality photo of a <class>.</class>
Caltech101	Categorize the <class> shown in the image.</class>
OxfordPets	Take a well-composed photo of a <class> with optimal lighting, focus, and minimal distractions. Capture the pet's unique characteristics, including expression and posture, to ensure a clear and distinct image.</class>
StanfordCars	Describe the distinguishing characteristics of the <class> in the image.</class>
Flowers102	Identify the unique visual features of the <class> flower accurately.</class>
Food101	Identify the primary ingredient in the <class> and describe its texture, color, and presentation.</class>
FGVCAircraft	Capture a comprehensive range of well-lit, high-resolution images of an <class> from various angles, meticulously showcasing its specific design features with perfect clarity and precision for unparalleled accuracy in aircraft.</class>
SUN397	A photo of a <class>, a type of large-scale scene.</class>
DTD	Classify the intricate <class> texture.</class>
EuroSAT	Analyze the <class> vehicles in the satellite image with state-of-the- art algorithms for precise classification and optimal efficiency.</class>
UCF101	Capture a high-quality, well-lit image of a person flawlessly demonstrating the <class> action with impeccable visual representation to</class>

(3) <INS> Analyze, categorize, and classify the intricate <CLASS> texture with unparalleled precision and exceptional attention to detail. </INS> (... more output prompts examples. . .)

(1) <INS> Analyze the intricate texture of <CLASS> with precision and attention to detail. </INS> (2) <INS> Thoroughly analyze and classify the intricate <CLASS> texture with meticulous precision. </INS>