

Estimating Epistemic and Aleatoric Uncertainty with a Single Model

Matthew Chan, Maria Molina, Christopher Metzler

Topics

- Motivation
 - What is uncertainty?
 - Why is uncertainty useful?
 - Aleatoric vs. epistemic uncertainty
- Problem Definition
 - Uncertainty estimation using generative models
 - Uncertainty estimation using deep ensembles
 - Drawbacks of existing methods
- Hyper-Diffusion Models
 - Proof-of-concept
 - Experiment results
 - Analysis against baselines

Motivation

Uncertainty provides valuable insights into how confident a model's predictions are.

Motivation

Uncertainty provides valuable insights into how confident a model's predictions are.

For high-stakes applications like MRI / CT reconstruction, uncertainty serves as a key indicator for rejection verification (i.e., whether model predictions should be verified by a human expert).

Objective

We seek to quantify two types of uncertainty:

Objective

We seek to quantify two types of uncertainty:

• Aleatoric uncertainty, which is *irreducible*, stems from inherent variability and randomness in the problem.

Objective

We seek to quantify two types of uncertainty:

- Aleatoric uncertainty, which is *irreducible*, stems from inherent variability and randomness in the problem.
- Epistemic uncertainty relates to a lack of knowledge and is *reducible* with more training data.

Problem Definition

Bayesian inference models a distribution of network predictions as the product between a likelihood (i.e., aleatoric) function and a posterior weight (i.e., epistemic) distribution:

$$p(x|y, \mathcal{D}) = \int \underbrace{p(x|y, \phi)}_{\text{aleatoric}} \underbrace{p(\phi|\mathcal{D})}_{\text{epistemic}} d\phi.$$

Symbol	Meaning			
x	Signal to recover			
y	Observed measurement			
ϕ	Model parameters			
${\cal D}$	Training dataset			

Building a Predictive Distribution

To build the predictive distribution

$$p(x|y, \mathcal{D}) = \int p(x|y, \phi) p(\phi|\mathcal{D}) d\phi$$

we can train an *ensemble* of *generative models*.

Building a Predictive Distribution

To build the predictive distribution

$$p(x|y, \mathcal{D}) = \int p(x|y, \phi) p(\phi|\mathcal{D}) d\phi$$

we can train an *ensemble* of *generative models*.

We can decompose the predictive distribution into aleatoric and epistemic uncertainty, using the law of total variance:

• AU =
$$\mathbb{E}_{\phi \sim p(\phi|\mathcal{D})} \left[\operatorname{Var}_{\hat{X} \sim p(x|y,\phi)} \left[\hat{X} \right] \right]$$

• EU = $\operatorname{Var}_{\phi \sim p(\phi|\mathcal{D})} \left[\mathbb{E}_{\hat{X} \sim p(x|y,\phi)} \left[\hat{X} \right] \right]$

Building a Predictive Distribution

To build the predictive distribution

$$p(x|y, \mathcal{D}) = \int p(x|y, \phi) p(\phi|\mathcal{D}) d\phi$$

we can train an *ensemble* of *generative models*.

We can decompose the predictive distribution into aleatoric and epistemic uncertainty, using the law of total variance:

• AU =
$$\mathbb{E}_{\phi \sim p(\phi|\mathcal{D})} \left[\operatorname{Var}_{\hat{X} \sim p(x|y,\phi)} \left[\hat{X} \right] \right]$$

• EU = $\operatorname{Var}_{\phi \sim p(\phi|\mathcal{D})} \left[\mathbb{E}_{\hat{X} \sim p(x|y,\phi)} \left[\hat{X} \right] \right]$

The computational cost of training large ensembles is prohibitively expensive!

Our Solution: Hyper-Networks

Our Solution: Hyper-Networks

Hyper-networks are networks that generate weights for another "primary" network.

Our Solution: Hyper-Networks

Hyper-networks are networks that generate weights for another "primary" network. They can approximate a deep ensemble, at a <u>significantly reduced</u> computational cost.

Hyper-Diffusion Models

We combine *hyper-networks* with generative models (i.e., *diffusion models*) to build a predictive distribution and estimate uncertainty.

We validate our method, **hyper-diffusion models (HyperDM)**, on a toy problem and then apply it on weather forecasting and CT reconstruction tasks.

(c) Compute aggregate prediction and uncertainty.

Aggregate Prediction

Epistemic Uncertainty

Aleatoric Uncertainty

We generate training datasets with controlled uncertainty using

 $y = \sin(x) + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2).$

We generate training datasets with controlled uncertainty using

 $y = \sin(x) + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2).$

• Strength of the white noise controls *aleatoric uncertainty*.

We generate training datasets with controlled uncertainty using

 $y = \sin(x) + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2).$

- Strength of the white noise controls *aleatoric uncertainty*.
- Size of the dataset controls *epistemic uncertainty*.

-4

-2

у

2

We generate training datasets with controlled uncertainty using

 $y = \sin(x) + \eta, \ \eta \sim \mathcal{N}(0, \sigma^2).$

- Strength of the white noise controls *aleatoric uncertainty*.
- Size of the dataset controls *epistemic uncertainty*.

Our estimates accurately predict the ground-truth uncertainty.

Weather Forecasting

We use our method for out-of-distribution detection on the ERA5 dataset.

HyperDM is trained to predict surface temperature at 6-hour intervals. We construct an anomalous hotspot over northeastern Canada and estimate uncertainty.

Our method's epistemic uncertainty estimate highlights the out-of-distribution feature better than deep ensembles.

Computed Tomography

We similarly test HyperDM on the LUNA16 dataset.

Our method is trained to recover high-quality CT scans from poor sinogram reconstructions. Out-of-distribution measurements are created by synthetically inserting metallic implants near the spine.

Our method's epistemic uncertainty estimate highlights the abnormal feature similarly to a deep ensemble.

Prediction Quality

We evaluate the predictive distribution's accuracy on a hold-out test set using the structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and continuous ranked probability score (CRPS).

HyperDM performs similarly to, if not better than, deep ensembles.

Table 2: **Ensemble prediction quality on real-world data.** The image quality assessment metrics achieved by each method on a CT reconstruction dataset (i.e., LUNA) and a weather prediction dataset (i.e., ERA5) are reported below. Best scores are highlighted in red and second best scores are highlighted in blue.

		LUNA			ERA5	
Method	$ $ SSIM \uparrow	PSNR (DB) \uparrow	$CRPS\downarrow$	$ $ SSIM \uparrow	PSNR (DB) \uparrow	$CRPS\downarrow$
MC-DROPOUT [16]	0.77	30.25	0.023	0.93	31.34	0.034
DPS-UQ [13]	0.89	34.95	0.01	0.94	32.83	0.013
HyperDM	0.87	35.16	0.01	0.95	33.15	0.012

Prediction Quality

We evaluate the predictive distribution's accuracy on a hold-out test set using the structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and continuous ranked probability score (CRPS).

HyperDM performs similarly to, if not better than, deep ensembles.

Additionally, it has a significantly lower training cost due to the hyper-network.

Table 2: **Ensemble prediction quality on real-world data.** The image quality assessment metrics achieved by each method on a CT reconstruction dataset (i.e., LUNA) and a weather prediction dataset (i.e., ERA5) are reported below. Best scores are highlighted in red and second best scores are highlighted in blue.

		LUNA			ERA5	
Method	$ $ SSIM \uparrow	PSNR (DB) \uparrow	$CRPS\downarrow$	$ $ SSIM \uparrow	PSNR (DB) \uparrow	$CRPS \downarrow$
MC-DROPOUT [16]	0.77	30.25	0.023	0.93	31.34	0.034
DPS-UQ [13]	0.89	34.95	0.01	0.94	32.83	0.013
HyperDM	0.87	35.16	0.01	0.95	33.15	0.012

Table 1: Comparison of training and inference times. The time required to train an M = 10 member ensemble on the LUNA16 dataset is shown in the second column. The third column shows the time required to generate a predictive distribution of size $M \times N = 1000$ for a single input.

Method	TRAINING TIME (MINUTES)	EVALUATION TIME (MINUTES)
MC-DROPOUT [16]	47.03	3.70
DPS-UQ [13]	441.09	3.31
HyperDM	48.53	3.18

Summary

We propose HyperDM, a single-model method that can efficiently estimate both *aleatoric* and *epistemic* uncertainty.

- Advantages:
 - **vs. deep ensembles**: HyperDM offers comparable performance at a fraction of the computational training cost.
 - **vs. Monte-Carlo dropout:** HyperDM predictions and uncertainty estimates significantly outperform Monte-Carlo dropout.
 - **vs. Bayesian neural networks:** HyperDM training and inference is much faster than Bayesian neural networks because it doesn't require per-layer weight sampling.
- Future work:
 - Scalability: the number of hyper-network parameters scales proportionally with the size of the primary network.

End