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Motivation

Uncertainty provides valuable insights 
into how confident a model’s 
predictions are.
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Motivation

Uncertainty provides valuable insights 
into how confident a model’s 
predictions are.

For high-stakes applications like MRI / 
CT reconstruction, uncertainty serves as 
a key indicator for rejection verification 
(i.e., whether model predictions should 
be verified by a human expert).

Angelopoulos, Anastasios N., et al. "Image-to-image regression with distribution-free uncertainty quantification and applications in imaging." International Conference on Machine Learning. PMLR, 2022.
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Objective
We seek to quantify two types of 
uncertainty:

• Aleatoric uncertainty, which is 
irreducible, stems from inherent 
variability and randomness in 
the problem.

• Epistemic uncertainty relates to 
a lack of knowledge and is 
reducible with more training 
data.

Yang, Chu-I & Li, Yi-Pei. (2023). Explainable uncertainty quantifications for deep learning-based molecular property prediction. Journal of Cheminformatics. 15. 10.1186/s13321-023-00682-3.



Problem Definition

Bayesian inference models a distribution of network predictions as the product 
between a likelihood (i.e., aleatoric) function and a posterior weight (i.e., 
epistemic) distribution:

Symbol Meaning

Signal to recover

Observed measurement

Model parameters

Training dataset
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To build the predictive distribution

we can train an ensemble of generative 
models.

We can decompose the predictive 
distribution into aleatoric and epistemic 
uncertainty, using the law of total variance:

•  

•  

The computational cost of training large ensembles is 
prohibitively expensive!
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Our Solution: Hyper-Networks

Hyper-networks are networks that generate weights for another “primary” 
network. They can approximate a deep ensemble, at a significantly reduced 
computational cost.



Hyper-Diffusion 
Models
We combine hyper-networks with generative 
models (i.e., diffusion models) to build a 
predictive distribution and estimate 
uncertainty.

We validate our method, hyper-diffusion 
models (HyperDM), on a toy problem and 
then apply it on weather forecasting and CT 
reconstruction tasks.
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Validation: Toy Problem

We generate training datasets with 
controlled uncertainty using

• Strength of the white noise controls 
aleatoric uncertainty.

• Size of the dataset controls epistemic 
uncertainty.

Our estimates accurately predict the 
ground-truth uncertainty.

Epistemic Training Data

Aleatoric Training Data

Epistemic Uncertainty

Aleatoric Uncertainty



Weather Forecasting
We use our method for out-of-distribution 
detection on the ERA5 dataset. 

HyperDM is trained to predict surface 
temperature at 6-hour intervals. We 
construct an anomalous hotspot over 
northeastern Canada and estimate 
uncertainty.

Our method’s epistemic uncertainty 
estimate highlights the out-of-distribution 
feature better than deep ensembles.



Computed 
Tomography
We similarly test HyperDM on the LUNA16 
dataset.

Our method is trained to recover high-quality 
CT scans from poor sinogram 
reconstructions. Out-of-distribution 
measurements are created by synthetically 
inserting metallic implants near the spine.

Our method’s epistemic uncertainty 
estimate highlights the abnormal feature 
similarly to a deep ensemble.



Prediction Quality
We evaluate the predictive distribution’s 
accuracy on a hold-out test set using the 
structural similarity index (SSIM), peak 
signal-to-noise ratio (PSNR) and continuous 
ranked probability score (CRPS).

HyperDM performs similarly to, if not better 
than, deep ensembles.



Prediction Quality
We evaluate the predictive distribution’s 
accuracy on a hold-out test set using the 
structural similarity index (SSIM), peak 
signal-to-noise ratio (PSNR) and continuous 
ranked probability score (CRPS).

HyperDM performs similarly to, if not better 
than, deep ensembles.

Additionally, it has a significantly lower 
training cost due to the hyper-network.



Summary

We propose HyperDM, a single-model method that can efficiently estimate both 
aleatoric and epistemic uncertainty.

• Advantages:
• vs. deep ensembles: HyperDM offers comparable performance at a fraction of the 

computational training cost.

• vs. Monte-Carlo dropout: HyperDM predictions and uncertainty estimates significantly 
outperform Monte-Carlo dropout.

• vs. Bayesian neural networks: HyperDM training and inference is much faster than Bayesian 
neural networks because it doesn’t require per-layer weight sampling.

• Future work:
• Scalability: the number of hyper-network parameters scales proportionally with the size of 

the primary network.
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