Query-Efficient Correlation Clustering with Noisy Oracle

Yuko Kuroki Atsushi Miyauchi

Francesco Bonchi Wei Chen

Correlation Clustering

Correlation Clustering (CC)

- A set V = [n] of n objects and a pairwise similarity measure $s: {V \choose 2} \to [0,1]$
- **Goal** of *Correlation Clustering* is to cluster the objects so that similar objects are put in the same cluster and dissimilar objects are put in different clusters.
- The objective is to minimize the following cost:

$$\operatorname{cost}_{\mathbf{s}}(\ell) = \sum_{\substack{(x,y) \in \binom{V}{2}, \\ \ell(x) = \ell(y)}} (1 - \mathbf{s}(x,y)) + \sum_{\substack{(x,y) \in \binom{V}{2}, \\ \ell(x) \neq \ell(y)}} \mathbf{s}(x,y),$$

where a clustering C can be represented as a function $\ell: V \to \mathbb{N}$.

Benefits and Approximability of Correlation Clustering

Benefits

- No need to know the number of optimal clustering (unlike k-means)
- Clustering based on pairwise judgments of similarity and dissimilarity (rather than quantitive distance information)

Approximation results for offline setting

- APX-hard! [Charikar, Guruswami, and Wirth 2003]
- Elegant O(1)-approximation algorithm, KwikCluster [Ailon, Charikar, and Newman 2008]

Query Efficient CC with Noisy Oracles

Research Question

We focus on the challenging scenario where

- (i) the underlying similarity measure is initially unknown and
- (ii) we can only query a **noisy oracle** that provides inaccurate evaluations of the weighted similarity s(x, y).

Goal: to devise clustering algorithms that perform as few queries on s(x, y) as possible to an oracle that returns noisy answers to s(x, y).

How We Leverage Bandit Theory

Pure Exploration of Multi-Armed Bandits (PE-MAB):

- Reduces the number of necessary queries by identifying the most informative pairs.
- Handles noisy feedback effectively through adaptive sampling.

Formulations as Pure Exploration of Bandits

At each round $t = 1, 2, \ldots$

- Learner will pull (i.e., query) one arm (i.e., pair of elements in V) from action space $E = {V \choose 2}$ based on past observations.
- After pulling $e \in E$, the learner can observe the random feedback $X_t(e)$, which is independently sampled from an *unknown* distribution with mean $s(e) \in [0, 1]$.

Fixed confidence setting

Given a confidence level $\delta \in (0,1)$ and additive error $\epsilon > 0$, the learner aims to guarantee that $\text{cost}_s(\mathcal{C}_{out}) \leq \alpha \cdot \text{OPT}(s) + \epsilon$ holds with probability at least $1 - \delta$. The evaluation metric of an algorithm is the sample complexity, i.e., the number of queries to the oracle the learner uses.

Fixed budget setting

Given a querying budget T and additive error $\epsilon > 0$, the learner aims to maximize the probability that $\text{cost}_s(\mathcal{C}_{out}) \leq \alpha \cdot \text{OPT}(s) + \epsilon$.

Key Ideas

Existing PE-CMAB's stopping conditions become no longer valid and the algorithm is not guaranteed to stop...!

Offline Algorithm Property

- Cluster the neighbors of a randomly selected pivot p_r at each phase $r=1,\ldots,n$
- The threshold is s(x, y) > 0.5
- Even without knowing $\mathbf{s}(x, y)$, we can design an online version of KwikCluster

KwikCluster

KwickCluster with Threshold Bandits

Identify High Similarity Pairs: Threshold bandits technique (e.g., [Kano et al. 2019]) **Pivot Algorithm**: Greedy procedure based on estimated high-similarity pairs

Output accuracy is guaranteed, even with small misidentifications for pairs with similarity close to 0.5.

Unbounded Samples: If pairs exist with s(x, y) = 0.5, a naive threshold bandits algorithm may not guarantee termination.

Key Design for Efficient Sample Complexity: To prevent unbounded sample complexity, the threshold bandits step is designed to allow the misidentification of such pairs.

By accurately estimating the mean similarity between pairs (i.e., $s(x, y) \in [0, 1]$), we can maintain an approximation guarantee of 5 in the offline (noise-free) setting.

Theoretical Results

Approximation Guarantees and Sample Complexity (Informal)

The proposed algorithm guarantees a 5-approximate solution with additive error $\epsilon > 0$ w.p. at least $1 - \delta$. Sample complexity is:

$$T = O\left(\Sigma_{(x,y)\in E} \frac{1}{\tilde{\Delta}_{x,y}^2} \log \frac{1}{\tilde{\Delta}_{x,y}^2 \delta} + \frac{n^2}{\max\{\Delta_{\min}, \epsilon/n^2\}^2}\right)$$

where
$$\tilde{\Delta}_{x,y} \approx |s(x,y) - 0.5|$$
 and $\Delta_{\min} := \min_{(x,y) \in E} |s(x,y) - 0.5|$.

- This bound is much better than the uniform sampling method, which requires $T = O(\frac{n^6}{\epsilon^2} \log \frac{n}{\delta})$
- The significant term related to $\log \delta^{-1}$ is characterized by the gap $\Delta_{(x,y)}$, which represents the distance from 0.5.

Summary of More Results

Key Steps of KC-FB (Fixed Budget Setting)

- Pivot-Based Exploration: Randomly selects pivots to build clusters in phases.
- Adaptive Query Strategy: Allocates queries effectively by focusing on impactful pairs.

Experimental Highlights

- Effectiveness: Ours outperforms traditional uniform sampling methods, showing better clustering quality with fewer queries.
- Scalability: Demonstrates robust performance across different dataset sizes.

Conclusion

Correlation Clustering with Noisy Oracle

Approach: Bandit-Based Pure Exploration

- We introduced nove formulations rooted in PE-CMAB and algorithms whose sample complexity (number of queries) required to find a clustering whose cost is at most $5 \cdot \text{OPT} + \epsilon$ with high probability.
- Our algorithms are the first examples of PE-CMAB for NP-hard offline problems.
- **Future work**: Deriving information-theoretic lower bounds of PE-CMAB for NP-hard offline problems, and investigating variants of correlation clustering or heteroscedastic noise scenarios.

Discover the Power of Bandit-Based Clustering!