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Multi-Entity Actions

Hand-Object InteractionsHand-Hand InteractionsPerson-Person Interactions Group Activities

… and more. 

1. Motivation

There are many existing benchmarks on interaction recognition.

• But why did almost all skeleton-based methods limit themselves to one specific type of interactions? 
• Can we treat all these 3D interactive skeletal data in a general view? 
• More importantly, is there a way we could solve this general multi-entity problem in a unified manner?
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(a) Estimated Distributions of Point Clouds from Skeleton Sequences (b) Experimental Results

Top-1 Accuracy
(with CTR -GCN Backbone)
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Discrepancy

X-Y X-Z Y-ZPoint Cloud of 10 4 SamplesAn Example
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Ours
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Ours

Walk Towards?
Walk Apart?

Inter-entity Distribution Discrepancies

We aim to recognize multi-entity actions using single-entity classifiers with late fusion strategy, which is a 
unified way to solve this general (in-the-wild) interaction learning problem.

However, we discover inter-entity distribution discrepancies (entity bias) in multi-entity skeletons.
This is the crux towards better understanding of multi-entity actions. It explains:
• why multi-entity action modeling usually diverges from the single-entity one
• why models tailored for individuals get unsatisfactory performance in this scenario

1. Motivation
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Implicit Convex Hull Constrained Adaptive Shift (Section 3.1)
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𝑝∗ = 𝑋𝑋𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑊)

𝑝∗

𝑋𝑋 = 𝑋𝑋(𝐼 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑊)𝐽1,𝑈𝑈)
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Parameterized Mapping for Coefficients(Section 3.2)
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Objective for Inter-entity Distribution
Discrepancy Minimization (Section 3.3)
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Convex Hull

CHASE consists of a learnable parameterized network and an auxiliary objective.

1) Implicit Convex Hull Constrained Adaptive Shift

𝑋𝑋: Spatiotemporal 𝑈𝑈 keypoints of a multi-entity skeleton sequence. 𝑊𝑊: A learnable weight matrix. 𝑆𝑆: Convex Hull of 𝑋𝑋.
A proof to a simple yet crucial proposition: the new origin is a point that lies in the minimal convex set containing 𝑋𝑋. It 
ensures sample-adaptivity and plausibility.

2. Method
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Implicit Convex Hull Constrained Adaptive Shift (Section 3.1)
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Objective for Inter-entity Distribution
Discrepancy Minimization (Section 3.3)
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Convex Hull

2) Parameterized Mapping for Coefficients

A lightweight parameterization of the mapping 
from skeleton sequences to their specific 
coefficients in convex combinations, further 
improving sample-adaptivity.

3) Mini-batch Pair-wise Maximum Mean Discrepancy

An auxiliary objective 
aimed at minimizing the 
inter-entity distribution 
discrepancies.

2. Method
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3. Experiments

By adopting our proposed CHASE, we can boost the performance of the vanilla counterparts by a 
noticeable margin in most multi-entity scenarios. CHASE also significantly minimizes discrepancies across 
all evaluation metrics.
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Va
ni

lla
C

HA
SE

(O
ur

s)

More (104)Fewer (102) Samples More (104)Fewer (102) Samples

3. Experiments

NTU Mutual 11 H2O

ASB101 CAD VD

NTU Mutual 26

Vanilla

Vanilla

CHASE
(Ours)

CHASE
(Ours)

MoreFewer Samples/Points MoreFewer Samples/Points MoreFewer Samples/Points



8

4. Conclusions

• We discover an interesting observation in multi-entity skeletons: Entity Bias.

• Proposed a Convex Hull Adaptive Shift based multi-Entity action recognition method
(CHASE), serving as an additional normalization step for single-entity backbones.

• Our main insight lies in the adaptive repositioning of skeleton sequences to mitigate
inter-entity distribution gaps, thereby unbiasing the subsequent classifier and boosting
its performance in multi-entity scenarios.
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