

CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition

NeurIPS 2024

Yuhang Wen, Mengyuan Liu*, Songtao Wu, Beichen Ding* Sun Yat-sen University, Peking University, Sony R&D Center China

https://github.com/Necolizer/CHASE

1. Motivation

Multi-Entity Actions

... and more.

There are many existing benchmarks on interaction recognition.

- But why did almost all skeleton-based methods limit themselves to one specific type of interactions?
- Can we treat all these 3D interactive skeletal data in a general view?
- More importantly, is there a way we could **solve this general multi-entity problem in a unified manner**?

1. Motivation

We aim to recognize multi-entity actions using single-entity classifiers with late fusion strategy, which is a unified way to solve this general (in-the-wild) interaction learning problem.

However, we discover **inter-entity distribution discrepancies (entity bias)** in multi-entity skeletons. This is the crux towards better understanding of multi-entity actions. **It explains:**

- why multi-entity action modeling usually diverges from the single-entity one
- why models tailored for individuals get unsatisfactory performance in this scenario

2. Method

CHASE consists of a learnable parameterized network and an auxiliary objective.

1) Implicit Convex Hull Constrained Adaptive Shift

$$\stackrel{
ightarrow}{p^*} = X {
m softmax}(W)$$

X: Spatiotemporal *U* keypoints of a multi-entity skeleton sequence. *W*: A learnable weight matrix. *S*: Convex Hull of *X*. **A proof to a simple yet crucial proposition**: the new origin is a point that lies in the minimal convex set containing *X*. It ensures sample-adaptivity and plausibility.

$$\hat{X} = X(I - ext{softmax}(W)J_{1,U}) \qquad ilde{S} = \left\{ \sum_{i=1}^U ilde{lpha}_i ec{p}_i \middle| ec{p}_i \in X, \sum_{i=1}^U ilde{lpha}_i = 1, ilde{lpha}_i \in (0,1)
ight\} \subset S$$

2. Method

2) Parameterized Mapping for Coefficients

$$W=\psi(X)=W_3\delta(W_2\phi(W_1X+b))$$

A lightweight parameterization of the mapping from skeleton sequences to their specific coefficients in convex combinations, further improving sample-adaptivity.

$$egin{aligned} \mathrm{MMD}(P,Q) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left(\mathbb{E}[f(x)] - \mathbb{E}[f(y)]
ight) \ &\mathbb{E}_{r(z)}[\mathrm{MMD}(z)] &= \sum_{i=1}^{E-1}\sum_{j=i+1}^{E}\mathrm{MMD}(P^i,P^j)/\mathrm{C}(E,2) \ &\mathbb{E}_{r(z)}[\mathrm{MMD}(z)] pprox rac{1}{M}\sum_{m=1}^{M}\mathrm{MMD}(z_m) \end{aligned}$$

3) Mini-batch Pair-wise Maximum Mean Discrepancy

An auxiliary objective aimed at minimizing the inter-entity distribution discrepancies.

3. Experiments

Method	Vanua	NTU Mut	ual 26(%)	NTU Mutual 11(%)		Method	
	venue	X-Sub	X-Set	X-Sub	X-View	AT [26]	
GDCN [11]	TPAMI'23	85.80	92.10	-	-	ISTA-Net [35]	
SkeleTR [76]	ICCV'23	87.80	88.30	94.80	97.70	H2OTR [80]	
ISTA-Net [35]	IROS'23	$90.56_{(\pm 0.08)}$	$91.72_{(\pm 0.30)}$	-	-	EffHandEgoN	
AHNet-Large [83]	PR'24	86.43	86.64	90.85	93.38	AHNet-Large	
me-GCN [77]	arXiv'24	90.00	90.00	95.50	98.20	CTR-GCN [36	
CTR-GCN [36]	ICCV'21	$89.32_{(\pm 0.06)}$	$90.19_{(\pm 0.17)}$	$95.94_{(\pm 0.36)}$	$98.32_{(\pm 0.29)}$	+ CHASE (O	
+ CHASE (Ours)	-	$91.30^{\uparrow 1.98}_{(\pm 0.22)}$	$92.34^{ m \uparrow 2.15}_{ m (\pm 0.10)}$	$96.45^{ m \uparrow 0.51}_{ m (\pm 0.05)}$	$98.83^{\uparrow 0.51}_{(\pm 0.13)}$		
InfoGCN [37](k=1)	CVPR'22	$90.22_{(\pm 0.13)}$	$91.13_{(\pm 0.16)}$	$95.51_{(\pm 0.10)}$	$97.76_{(\pm 0.22)}$	INIOGUN [37]	
+ CHASE (Ours)	-	$91.86^{\uparrow 1.64}_{(\pm 0.05)}$	$92.41^{\uparrow 1.28}_{(\pm 0.34)}$	$96.35^{\uparrow 0.84}_{(\pm 0.18)}$	$98.25^{\uparrow 0.49}_{(+0.25)}$	+ CHASE (Ou	
STSA-Net [40]	Neuro.'23	$88.41_{(\pm 0.01)}$	$90.19_{(\pm 0.11)}$	$95.96_{(\pm 0.09)}$	$98.47_{(\pm 0.09)}$	STSA-Net [40]	
+ CHASE (Ours)	-	$89.77^{igcap_{(\pm 0.18)}}_{(\pm 0.18)}$	$91.54^{ m \uparrow 1.35}_{ m (\pm 0.12)}$	$96.63^{\uparrow 0.68}_{(\pm 0.10)}$	$98.73^{ightarrow 0.26}_{(\pm 0.08)}$	+ CHASE (Ou	
HD-GCN [38](CoM=1)	ICCV'23	$88.25_{(\pm 0.44)}$	$90.08_{(\pm 0.12)}$	$95.58_{(\pm 0.10)}$	$97.93_{(\pm 0.07)}$	HD-GCN [38]	
+ CHASE (Ours)	-	$90.81^{ m \uparrow 2.56}_{ m (\pm 0.13)}$	$92.06^{\uparrow 1.97}_{(\pm 0.21)}$	$96.22^{\uparrow 0.64}_{(\pm 0.05)}$	$98.31^{ m \uparrow 0.38}_{ m (\pm 0.07)}$	+ CHASE (Ou	

Method	Venue	H2O(%)	H2O(%) ASB101(%)		VD(%)	
AT [26]	CVPR'20	-	-	-	92.30	
ISTA-Net [35]	IROS'23	$89.09_{(\pm 1.21)}$	$28.01_{(\pm 0.06)}$	$87.16_{(\pm 2.55)}$	$91.40_{(\pm 0.23)}$	
H2OTR [80]	CVPR'23	90.90	-	-	-	
EffHandEgoNet [81]	arXiv'24	91.32	-	-	-	
AHNet-Large [83]	PR'24	-	-	89.32	84.31	
CTR-GCN [36]	ICCV'21	$81.68_{(\pm 0.85)}$	$27.83_{(\pm 0.45)}$	$80.45_{(\pm 2.29)}$	$92.66_{(\pm 0.21)}$	
+ CHASE (Ours)	-	$91.05^{ m \uparrow 9.37}_{(\pm 1.98)}$	$28.03_{(\pm 0.30)}^{\uparrow 0.21}$	$89.61^{\uparrow 9.16}_{(\pm 0.20)}$	$92.89^{ m \uparrow 0.24}_{ m (\pm 0.15)}$	
InfoGCN [37](k=1)	CVPR'22	$76.24_{(\pm 3.93)}$	$27.18_{(\pm 0.10)}$	$83.07_{(\pm 0.46)}$	$91.77_{(\pm 0.15)}$	
+ CHASE (Ours)	-	$83.47^{\uparrow7.23}_{(\pm2.89)}$	${f 27.36^{igta 0.18}_{(\pm 0.12)}}$	$84.18^{\uparrow 1.11}_{(\pm 2.91)}$	$92.00^{\uparrow 0.23}_{(\pm 0.15)}$	
STSA-Net [40]	Neuro.'23	$92.29_{(\pm 0.52)}$	$27.70_{(\pm 0.19)}$	$80.20_{(\pm 3.60)}$	$92.52_{(\pm 0.52)}$	
+ CHASE (Ours)	-	$94.77_{(\pm 1.36)}^{igstar{1}2.48}$	${f 27.81}^{igta 0.11}_{(\pm 0.13)}$	$85.93^{igstyle 5.73}_{(\pm 2.46)}$	${f 92.78}^{igta 0.26}_{(\pm 0.41)}$	
HD-GCN [38](CoM=1)	ICCV'23	$72.73_{(\pm 0.41)}$	$27.31_{(\pm 0.36)}$	$76.93_{(\pm 4.38)}$	$91.32_{(\pm 0.02)}$	
+ CHASE (Ours)	-	$81.61^{ightarrow 8.88}_{(\pm 1.03)}$	${\bf 27.50}_{(\pm 0.24)}^{\uparrow 0.19}$	$82.39^{\uparrow 5.46}_{(\pm 1.61)}$	$92.00^{ m \uparrow 0.68}_{ m (\pm 0.07)}$	

Set	Method	Avg KLD \downarrow	JSD↓	$BD\downarrow$	$\text{HD}\downarrow$	MMD↓
Ι	Vanilla	$1.07_{(\pm 0.25)}$	$0.19_{(\pm 0.04)}$	$0.25_{(\pm 0.06)}$	$0.46_{(\pm 0.06)}$	$0.94_{(\pm 0.54)}$
	CHASE (Ours)	$0.39_{(\pm 0.09)}$	$0.08_{(\pm 0.02)}$	$0.10_{(\pm 0.02)}$	$0.30_{(\pm 0.03)}$	$0.05_{(\pm 0.02)}$
п	Vanilla	$1.00_{(\pm 0.23)}$	$0.18_{(\pm 0.04)}$	$0.23_{(\pm 0.05)}$	$0.45_{(\pm 0.05)}$	$1.03_{(\pm 0.60)}$
11	CHASE (Ours)	$0.45_{(\pm 0.08)}$	$0.10_{(\pm 0.02)}$	$0.11_{(\pm 0.02)}$	$0.32_{(\pm 0.03)}$	$0.07_{(\pm 0.02)}$
III	Vanilla	$0.72_{(\pm 0.14)}$	$0.14_{(\pm 0.02)}$	$0.17_{(\pm 0.03)}$	$0.39_{(\pm 0.04)}$	$1.25_{(\pm 0.60)}$
	CHASE (Ours)	$0.41_{(\pm 0.08)}$	$0.08_{(\pm 0.02)}$	$0.10_{(\pm 0.02)}$	$0.30_{(\pm 0.03)}$	$0.05_{(\pm 0.04)}$
IV	Vanilla	$0.75_{(\pm 0.14)}$	$0.14_{(\pm 0.03)}$	$0.17_{(\pm 0.03)}$	$0.40_{(\pm 0.04)}$	$1.15_{(\pm 0.56)}$
	CHASE (Ours)	$0.41_{(\pm 0.07)}$	$0.08_{(\pm 0.01)}$	$0.09_{(\pm 0.02)}$	$0.30_{(\pm 0.03)}$	$0.04_{(\pm 0.03)}$

Method	Acc (%)	Δ (%)		HAS	CLB	MPMMD	lr	Acc (%)	Δ (%)
Vanilla	$89.32_{(\pm 0.06)}$	-	$\overline{\checkmark}$		\checkmark	\checkmark	0.1	91.30 (+0.22)	-
S2CoM	$88.66_{(\pm 0.26)}$	-0.67	\checkmark		\checkmark	 ✓ 	0.1	$22.65_{(\pm 0.35)}$	-68.65
BatchNorm	$89.06_{(\pm 0.16)}$	-0.27	\checkmark		\checkmark	\checkmark	0.01	$86.99_{(\pm 0.16)}$	-4.32
ER [35]	$89.34_{(+0.15)}$	+0.02	\checkmark	\checkmark		\checkmark	0.1	$91.20_{(\pm 0.13)}$	-0.10
Aug	$89.72_{(+0.04)}$	+0.40	\checkmark			√	0.1	$22.75_{(\pm 0.12)}$	-68.56
S2CoM†/STD	$90.29(\pm0.06)$	+0.97	\checkmark	,		√	0.01	$23.51_{(\pm 0.38)}$	-67.79
S2CoM [†]	$90.79(\pm 0.10)$	+1.47	,	√	v	\checkmark	0.1	$20.42_{(\pm 0.09)}$	-70.88
	01.20	+ 1.09	\checkmark	✓	\checkmark		0.1	$91.17_{(\pm 0.18)}$	-0.13
CHASE (Ours)	$91.30_{(\pm 0.22)}$	+1.98					0.1	$89.50_{(\pm 0.14)}$	-1.81

By adopting our proposed CHASE, we can boost the performance of the vanilla counterparts by a noticeable margin in most multi-entity scenarios. CHASE also significantly minimizes discrepancies across all evaluation metrics.

3. Experiments

Category

4. Conclusions

- We discover an interesting observation in multi-entity skeletons: Entity Bias.
- Proposed a Convex Hull Adaptive Shift based multi-Entity action recognition method (CHASE), serving as an additional normalization step for single-entity backbones.
- Our main insight lies in **the adaptive repositioning of skeleton sequences to mitigate inter-entity distribution gaps**, thereby unbiasing the subsequent classifier and boosting its performance in multi-entity scenarios.

Thank you for listening

[NeurIPS 2024] CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition

Yuhang Wen, Mengyuan Liu*, Songtao Wu, Beichen Ding* Sun Yat-sen University, Peking University, Sony R&D Center China https://github.com/Necolizer/CHASE

