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Generalization settings for visual classification
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Figure 1: Diagrams of different generalization settings in visual classification tasks.

How can we improve generalization for all these settings?
Can we even improve the interpretability with generalization?
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Interpretability and generalization in one: L-Reg

Facing the above questions, we introduce Logic regularization (L-Reg)

LL−Reg=
1
M

M∑
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 K∑
j=1
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j Zi)]− [
1
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, (1)

where σ(Ŷ T
j Zi) denotes the value at the i , j position of softmax(Ŷ T Z ) and the soft-max function is

applied at the last dimension.

L-Reg improves generalization with interpretability.

Zhaorui Tan 1,2, Xi Yang 1,∗, Qiufeng Wang1, Anh Nguyen2, Kaizhu Huang 3,∗ L-Reg Oct, 2024 4 / 20



Generalization settings for visual classification Interpretability and generalization in one: L-Reg Connecting logical analysis framework to visual classification task Derivation of L-Reg from semantic support Results Advantages, limitation and future work More ... References

What can L-Reg do? Improving interpretability
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Figure 2: GradCAM [1] visualizations for the unknown class ‘person’ across seen and unseen domains of the GMDG baseline with L2 regularization that is
trained without and with L-Reg, respectively. Both experiments share the same hyper-parameters, except the latter is using the L-Reg.
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What can L-Reg do? Reducing classifier complexity
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(b). Distribution of values of classifer’s weights under classes(a). Heatmap of classifer’s weights

Figure 3: Visualizations of classifiers’ weights form models trained using GMDG on PACS dataset without and with L-Reg under mDD+GCD setting, respectively.
Both experiments share the same hyper-parameters using Regnety-16g backbone, except the latter uses additional L-Reg.
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What can L-Reg do? Balancing feature complexity
Distance between values with most counts of known and unknown classes

Without L-Reg With L-Reg
Figure 4: Visualizations of latent features form models trained using GMDG on PACS dataset without and with L-Reg under mDD+GCD setting using RegNetY-

16G backbone, respectively.
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Logical analysis framework v.s. visual classification task

Definition

Following [2], a logic L is a five-tuple defined in the form:

L = ⟨FL,ML, |=L,mngL,⊢L, ⟩ . (2)

FL: a set of all formulas of L. Images and labels (X ,Y ) for computer vision cases.
ML: a class called the class of all models (or possible worlds) of L. Different domains D of X .
|=L: a binary relation, |=L⊆ ML × FL, called the validity relation of L. In the known set, the ground truth label of the image is
given as truth, which is the validity relation.
mngL : FL × ML −→ Sets where Sets is the class of all sets. mngL is a function with domain FL × ML, called the meaning
function of L: Classifiers.
⊢L represents the provability relation of L, telling us which formulas are ‘true’ in which possible world and usually is definable
from mngL. Estimation criteria.

We can correlate the image classification procedure in computer vision with the framework
of logic studies perfectly :)
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‘Good general’ logic

Following Definition 1, on the given X ,Y sets, we specify:

L(Xs,Ys) =
〈
F(Xs,Ys),D, |=(Xs,Ys),h,⊢(h(X),Y ) .

〉
(3)

We aim to achieve a good general logic L∗ from L(Xs,Ys) because:
A good general logic has strong generalizability.

By definition, we know that:
F(g(Xs),Ys) and h in L∗ should form the atomic formulas to achieve the good general logic.

How to form the atomic formulas?
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Semantic support

Definition (Semantic support)

We denote z = g(x), where z ∈ Z , as a set of compositions of these semantics: z := {z i}M
i=1, where M is the number of dimensions

or semantics. Notably, not all semantics in z may be useful for deduction or inference. We define the subset γ of z, extracted from
the sample x ∼ X , as the semantic support of x if γ is sufficient for deducing the relationship between x and a y ∼ Y.

Semantic supports gained in latent features combining with the classifier from the atomic
formulas: h(g(x), y ,d) → True/False, s.t .,⊢(h◦g(X ),Y )=|=(g(Xs),Ys).
Based on the definition of good general logic, we present the constraints of learning semantic sup-
ports:

min
h,g

H(Y |g(Γ),D)− H(Y |g(Γ̄),D), (4)

which derives into Eq.1 as L-Reg.
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Results: MDG results
Table 1: MDG results: Comparison between the proposed and previous non-ensemble and ensemble mDG methods. The best results for each group are

highlighted in bold. Improvement and degradation in our approach from GMDG are highlighted in red.

Test domain PACS VLCS OfficeHome TerraIncognita DomainNet Avg.

MMD [3] 84.7±0.5 77.5±0.9 66.3±0.1 42.2±1.6 23.4±9.5 58.8
Mixstyle [4] 85.2±0.3 77.9±0.5 60.4±0.3 44.0±0.7 34.0±0.1 60.3
GroupDRO [5] 84.4±0.8 76.7±0.6 66.0±0.7 43.2±1.1 33.3±0.2 60.7
IRM [6] 83.5±0.8 78.5±0.5 64.3±2.2 47.6±0.8 33.9±2.8 61.6
ARM [7] 85.1±0.4 77.6±0.3 64.8±0.3 45.5±0.3 35.5±0.2 61.7
VREx [8] 84.9±0.6 78.3±0.2 66.4±0.6 46.4±0.6 33.6±2.9 61.9
CDANN [9] 82.6±0.9 77.5±0.1 65.8±1.3 45.8±1.6 38.3±0.3 62.0
DANN [10] 83.6±0.4 78.6±0.4 65.9±0.6 46.7±0.5 38.3±0.1 62.6
RSC [11] 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 62.7
MTL [12] 84.6±0.5 77.2±0.4 66.4±0.5 45.6±1.2 40.6±0.1 62.9
MLDG [13] 84.9±1.0 77.2±0.4 66.8±0.6 47.7±0.9 41.2±0.1 63.6
Fish [14] 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
ERM [15] 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
SagNet [16] 86.3±0.2 77.8±0.5 68.1±0.1 48.6±1.0 40.3±0.1 64.2
SelfReg [17] 85.6±0.4 77.8±0.9 67.9±0.7 47.0±0.3 42.8±0.0 64.2
CORAL [18] 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.5
mDSDI [19] 86.2±0.2 79.0±0.3 69.2±0.4 48.1±1.4 42.8±0.1 65.1

Use RegNetY-16GF [20] as oracle model.
MIRO [21] (ECCV23) 97.4±0.2 79.9±0.6 80.4±0.2 58.9±1.3 53.8±0.1 74.1
GMDG [22] (CVPR24) 97.3±0.1 82.4±0.6 80.8±0.6 60.7±1.8 54.6±0.1 75.1
GMDG + L-Reg 97.4±0.20.1↑ 82.4±0.00.1↑ 80.9±0.50.1↑ 62.9±0.92.2↑ 55.3±0.00.8↑ 75.80.7↑
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Results: GCD results, mDG+GCD results

Table 2: GCD results: Average results across all datasets of PIM with L-Reg.
Improvements and degradation are highlighted in red and blue, re-
spectively.

Average All Known Unknown

K-means [23] 44.7 46.0 43.9
RankStats+ [24] (TPAMI-21) 38.6 54.6 25.6
UNO+ [25] (ICCV-21) 51.2 74.5 36.7
ORCA [26] (ICLR-22) 46.3 51.3 41.2
ORCA - ViTB16 56.7 65.6 49.9
GCD [27] (CVPR-22) 60.4 71.8 52.9
RIM [28] (NeurIPS-10) 62.0 72.5 55.4
TIM [29] (NeurIPS-20) 62.7 72.6 56.4

PIM [30] (ICCV-23) 67.4 79.3 59.9
PIM + L-Reg 68.81.4↑ 79.00.3↓ 62.72.8↑

Table 3: Results of Congestion prediction: Congestion prediction is pro-
posed for circuit design.

pearson spearman kendall
Gpdl with UNet++ 0.6085 0.5202 0.3855

CircuitFormer (SOTA) 0.6374 0.5282 0.3935
CircuitFormer + L-Reg (Ours) 0.6553 0.5289 0.3944

Table 4: MDG+GCD results: Averaged accuracy scores for all, known and
unknown classes across all five datasets. Improvements and degrada-
tion are highlighted in red and blue respectively.

Method Domain gap All Known Unknown
ERM Not 44.69 59.33 23.54

+L-Reg minimized 45.50 61.43 21.63
Imp. 0.81 2.09 -1.91
PIM Not 46.95 60.35 26.90

+L-Reg minimized 47.27 60.83 26.34
Imp. 0.32 0.48 -0.57

MIRO Not sufficiently 49.67 68.86 25.79
+L-Reg minimized 52.11 71.26 26.49

Imp. 2.44 2.39 0.71
GMDG 47.94 68.75 20.68
+L-Reg Minimized 51.94 69.87 27.68

Imp. 4.00 1.12 7.01
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Advantages and limitations
L-Reg forms atomic formulas and improves
interpretability.

For known classes:
h(has fingerboard, is guitar,d ∈ D) → True
h(not has fingerboard, is guitar,d ∈ D) → False

For unknown classes:
h(has a face, is person,d ∈ D) → True
h(not has a face, is person,d ∈ D) → False

Limitations
It may fail when the domain shift is enormous, e.g., sketch
domain where human faces are missing and others.
One crucial precondition highlighted in the theoretical
analysis is that L-Reg operates effectively with a
representation Z , where each dimension represents
independent semantics.

Table 5: Averaged results of applying L-Reg to different layers across domains
in PACS.

All Known Unkown

GMDG 58.33 91.46 10.18
L-Reg: Deep layer 67.82 91.86 31.33
L-Reg: Earlier and the deep layers 58.97 80.73 35.05
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Figure 5: GradCAM visualizations of GMDG trained without and with L-Reg.
The seen, unseen domains and known, unknown classes are de-
noted.

Zhaorui Tan 1,2, Xi Yang 1,∗, Qiufeng Wang1, Anh Nguyen2, Kaizhu Huang 3,∗ L-Reg Oct, 2024 13 / 20



Generalization settings for visual classification Interpretability and generalization in one: L-Reg Connecting logical analysis framework to visual classification task Derivation of L-Reg from semantic support Results Advantages, limitation and future work More ... References

Future work
We provide several possible solutions to the limitations of L-Reg.

L-Reg should be applied to features from deep layers.
Constraining the independence of dimensions in Z (e.g., using Ortho-Reg).

Table 6: Results of GCD: Averaged results across all datasets of PIM with dif-
ferent regularization applied to the latent features: Sparsity: achieved
through Bernoulli Sample; Ortho-Reg: orthogonality regularization.
+L-Reg outperforms other regularization terms when they are applied
solely; +L-Reg+Ortho-Reg achieves the best performance and alle-
viates the performance degradation of unknown classes, validating
our hypothesis in the paper that the improper Z may result in compro-
mises and constraining the independence of each z i ∈ z, z ∈ Z may
be helpful.

Avg
All Known Unknown

PIM 67.4 79.3 59.9
+Sparsity 66.6 77.3 60.0
Improvements -0.7 -2.0 0.1
+Ortho-Reg 68.4 79.2 61.9
Improvements 1.0 -0.1 2.0
+L-Reg 68.8 79.0 62.7
Improvements 1.4 -0.3 2.8
+L-Reg+Ortho-Reg 69.3 79.6 63.4
Improvements 2.0 0.3 3.5

Table 7: Results of GCD: Detailed results across all datasets of PIM with dif-
ferent regularization applied to the latent features: Sparsity: achieved
through Bernoulli Sample; Ortho-Reg: orthogonality regularization.

CUB Stanford Cars Herbarium19
All Known Unknown All Known Unknown All Known Unknown

PIM 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8
PIM + Sparsity 60.1 72.7 53.8 40.4 61.7 30.1 42.0 53.7 35.8
Improvements -2.6 -3.0 -2.4 -2.7 -5.2 -1.5 -0.3 -2.4 1.0
PIM + Ortho-Reg 64.9 76.7 58.9 44.3 65.6 34.1 42.9 57.2 35.1
Improvements 2.2 1.0 2.7 1.2 -1.3 2.5 0.6 1.1 0.3
PIM + L-Reg 65.3 76.0 60.0 44.8 66.0 34.6 43.7 55.8 37.2
Improvements 2.6 0.3 3.8 1.7 -0.9 3.0 1.4 -0.3 2.4
PIM + L-Reg + Ortho-Reg 66.8 77.3 61.6 45.8 67.3 35.5 43.3 57.5 35.6
Improvements 4.1 1.6 5.4 2.7 0.4 3.9 1.0 1.4 0.8

CIFAR10 CIFAR100 ImageNet-100
All Known Unknown All Known Unknown All Known Unknown

PIM 94.7 97.4 93.3 78.3 84.2 66.5 83.1 95.3 77.0
PIM + Sparsity 94.2 97.4 92.6 79.7 84.6 69.7 83.4 93.7 78.2
Improvements -0.5 0.0 -0.7 1.4 0.4 3.2 0.3 -1.6 1.2
PIM + Ortho-Reg 95.1 97.4 93.9 80.2 84.6 71.4 83.0 93.4 77.7
Improvements 0.4 0.0 0.6 1.9 0.4 4.9 -0.1 -1.9 0.7
PIM + L-Reg 94.8 97.6 93.4 80.8 84.6 73.2 83.4 94.0 78.0
Improvements 0.1 0.2 0.1 2.5 0.4 6.7 0.3 -1.3 1.0
PIM + L-Reg + Ortho-Reg 95.1 97.6 93.9 81.2 84.2 75.0 83.7 93.6 78.7
Improvements 0.4 0.2 0.6 2.9 0.0 8.5 0.6 -1.7 1.7
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Wait! You may also be interested in ...

Our previous studies in generalization:
Multi-domain generalization from statistical perspective:
Rethinking Multi-domain Generalization with A General Learning Objective (CVPR24). [22]

An augmentation framework for enhancing generalization in text2image generation that based on group theory:
Semantic-Aware Data Augmentation for Text-to-Image Synthesis (AAAI24). [31]
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