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Today’s models are becoming 
larger and larger

Efficient architectures!

Transformer architecture

Model size grows in years

quadratic complexity 
of sequence length 

quadratic complexity of 
hidden states dimension

High pressure on both training and deployment
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Attention has been investigated 
much while FFN has not!

• Not many works on FFN training!

- a key component for achieving strong 
performance [1, 2].

- limited knowledge of structured matrices 
within FFN at a sufficient scale

• Big FFN module!

- over 60% of the Transformer’s parameters 

- 54% of total latency in a 1.3B

- even bigger FFN size in Llama-3, Gemma

[1]. FNet: Mixing Tokens with Fourier Transforms
[2]. Attention Is All You Need But You Don’t Need All Of It For Inference of Large Language Models 3
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Structured matrices

They have not yet been thoroughly explored at a sufficient 
scale in modern LLM architecture training



• Three structured matrices for FFN 

module in pretraining transformer 

language models

• Efficiency study across various scenarios 

• Optimization challenges

Outline

5

Good scaling performance

Pre-merge technique

Self-guided training



Method
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Three structured matrices for 
efficient and accurate FFN training

Superscript 𝑟: low-rank projection
Superscript 𝑏: block-diagonal projection
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Three structured matrices: LowRank

Superscript 𝑟: low-rank projection
Superscript 𝑏: block-diagonal projection

Params./MAC

𝑀 ⋅  𝑁 → 𝑁 + 𝑀 ⋅ 𝑅

𝑼𝑟(𝑽𝑟𝒙)

[1]. The truth is in there:Improvingreasoning in language models with layer-selective rank reduction 
[2]. Lora: Low-rank adaptation of large language models. 
[3]. Implicit regularization in deep matrix factorization 
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Three structured matrices: BlockShuffle

Superscript 𝑟: low-rank projection
Superscript 𝑏: block-diagonal projection

Params./MAC

𝑀 ⋅ 𝑁 → min 𝑁, 𝑀 ⋅
𝑁 + 𝑀

𝐵

[1]. Monarch: Expressive structured matrices for efficient and accurate training. 
[2]. Shufflenet: An extremely efficient convolutional neural network for mobile devices. 
[3]. Mobilenetv2: Inverted residuals and linear bottlenecks 

𝑓−1(𝑼𝑏𝑓(𝑽𝑏𝒙))
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Three structured matrices: BlockDense

Superscript 𝑟: low-rank projection
Superscript 𝑏: block-diagonal projection

𝑼𝑟(𝑽𝑏𝒙)

Params./MAC

 𝑀 ⋅ 𝑁 → 𝑅 ⋅ (𝑀 +
𝑁

𝐵
)



• Small T

- Parallelism-bound FFN during online 
decoding

- Structured parametrization may lead to worse 
latency performance

• Big T

- Training, prefilling, decoding with a big 
batch size 

- Reduced FLOPs and parameters can lead 
to real efficiency gain

11𝑇: number of batches of tokens

Maintaining efficiency during online decoding 

• Pre-merge technique

- Benefited from non-linearity

- Dynamically decide to use (𝑼𝑽)𝒙 𝑜𝑟 𝑼(𝑽𝒙) 



• Self-guided training

- 𝒐 = 𝛼𝑾𝒙 + 1 − 𝛼 𝑼 𝑽𝒙 ,  where α decays following a 
cosine scheduler 
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Addressing the optimization challenge 

[1]. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. 
[2]. Neural networks and principal component analysis: Learning from examples without local minima. 

𝑾𝒙

Training 𝑼 𝑽𝒙

• More difficulties in training structured matrices

- additional symmetries can lead to poor training dynamics

𝑼 𝑽𝒙0.3𝑾𝒙 +  0.7𝑼 𝑽𝒙



Results: Scaling analyses

13



Scaling law study: better training FLOPs utilization 

- Steeper scaling curves of Structured FFN up to 1.3B 
models: when the x-axis is further extended, we can have 
fewer parameters and predict significantly smaller loss 
per FLOP.

- Better training FLOPs utilization of the Wide 
and Structured network: lower perplexity while 
using much fewer parameters 
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Scaling model size: better downstream performance 

- Good scaling trend of wide and structured networks in the over-training 
regime i.e., 300B tokens.
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• Small T with the pre-merge technique• Real efficiency gain in Big T case

Results: Efficiency

Tokens

- BlockShuffle can be slower due to 
additional shuffle operations.

- The other two have 1.4x and 2.6x speed-up 
with 63% and 32% FFN parameters

- With a 2048-width FFN, it is difficult to fully utilize 
resources on GPU with limited tokens. 

- With a width 5120 and 6144, 2.81× acceleration of 
BlockDense with 32% parameters on T = 1536. 



Results: self-guided training
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- Apply self-guided training during the first 
half of training: consistently reduces loss for 
all efficient parametrizations

- Apply self-guided training with matched training 
FLOPs: close performance between structured FFN 
with 32% parameters and dense models.



• Scope of our study
- from a training-from-scratch perspective

- scales up models to 1.3B parameters

- conducted within recent Transformer-based LLMs not convolutional architectures.

• Research Objective
- not aimed at identifying the "best" structured matrix

- Investigate common properties of structured matrices: scaling, efficiency and optimization 

• Proposed Techniques

- Pre-merge training

- Self-guided training

Conclusion
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Thanks
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