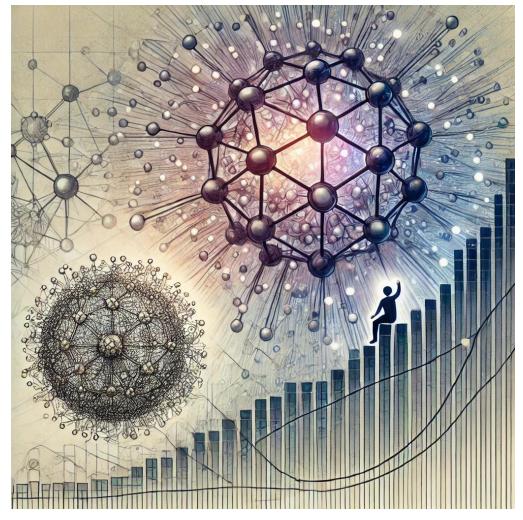


Presentation at NeurlPS 2024

Textual Training for the Hassle-Free Removal of Unwanted Visual Data

Saehyung Lee, Jisoo Mok, Sangha Park, Yongho Shin, Dahuin Jung, Sungroh Yoon

We are currently in the midst of what is known as the large-scale AI era.



1.50 300 CIFAR-10 Imagenet Imagenet

Model size ↑

Dataset size

What do the following two datasets have in common? Large-scale? Web crawling?

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

80 million tiny images: a large dataset for non-parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman

LAION-400-MILLION OPEN DATASET

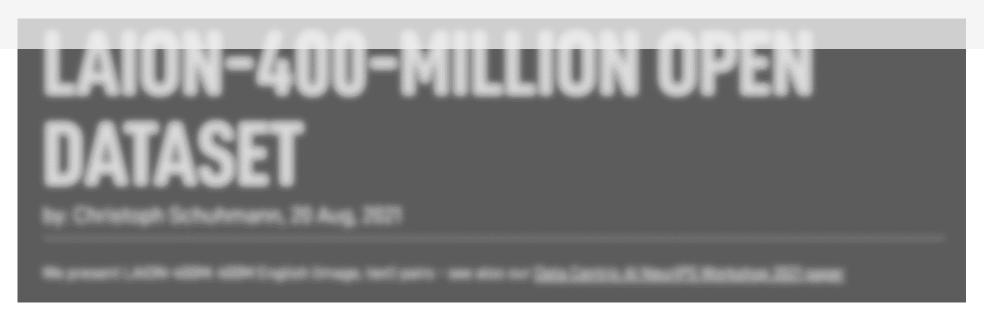
by: Christoph Schuhmann, 20 Aug, 2021

We present LAION-400M: 400M English (image, text) pairs - see also our <u>Data Centric Al NeurIPS Workshop 2021 paper</u>

What do the following two datasets have in common? Large-scale? Web crawling?

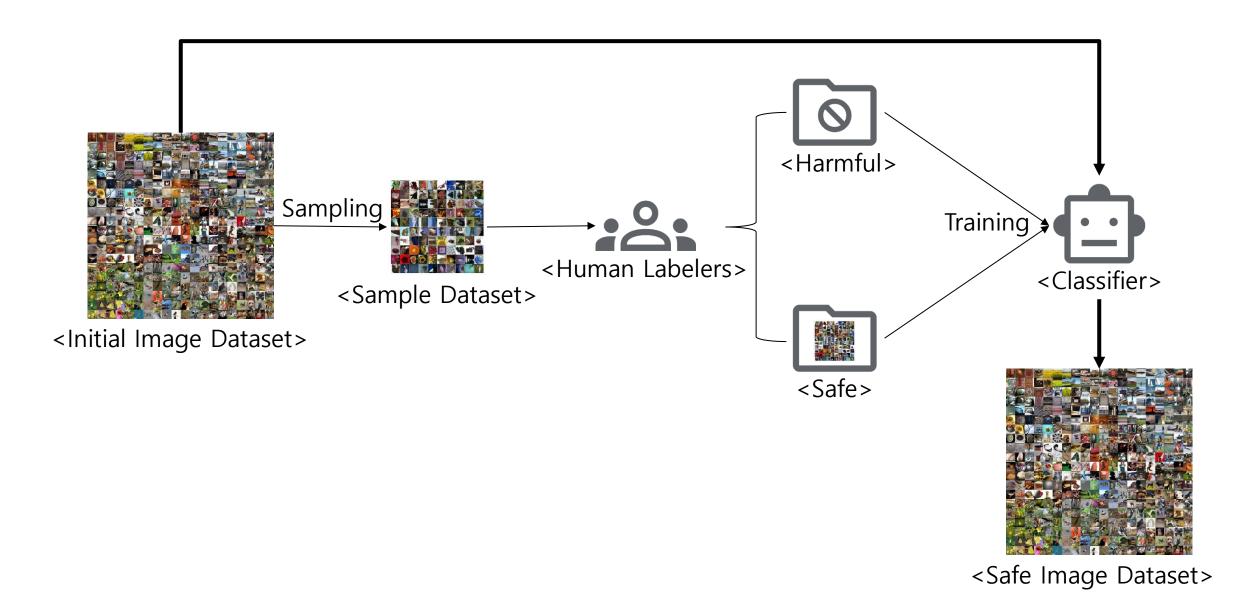
They contain harmful content.

80 million tiny images: a large dataset for

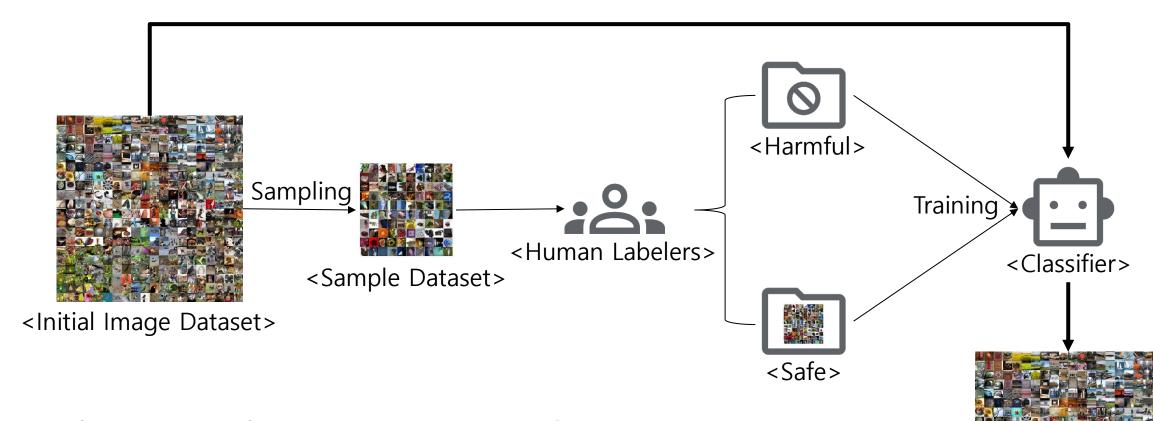


Birhane et al. "Into the laion's den: Investigating hate in multimodal datasets." NeurIPS 2023. Birhane, Abeba, and Vinay Uday Prabhu. "Large image datasets: A pyrrhic win for computer vision?." WACV 2021.

How can we filter out harmful content lurking in our large image dataset?



How can we filter out harmful content lurking in our large image dataset?

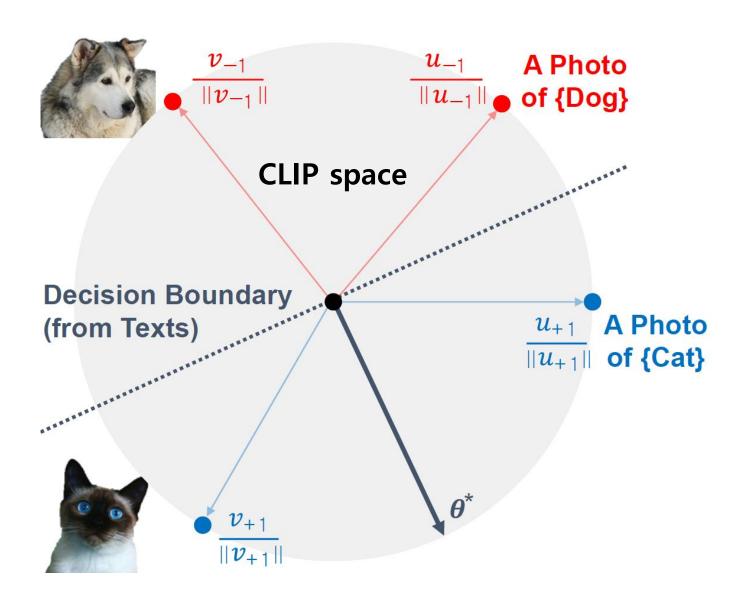


This approach 1) requires image datasets;

- 2) exploits considerable human labor;
- 3) and needs to be re-initiated from the beginning whenever there are changes in the training objective.

<Safe Image Dataset>

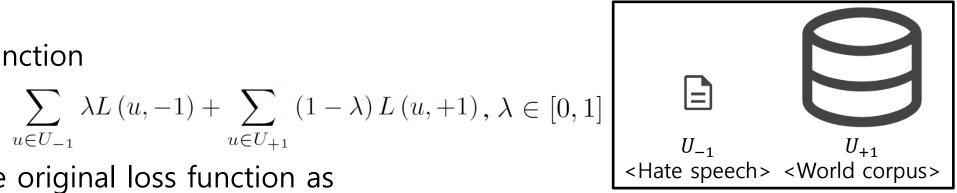
IDEA 1: classifiers obtained solely using textual data can operate on visual data as well!



IDEA 2: No need to divide the world corpus!

The original loss function

$$\sum_{u \in U_{-1}} \lambda L(u, -1) + \sum_{u \in U_{+1}} (1 - \lambda) L(u, +1), \lambda \in [0, 1]$$



We reformulate the original loss function as

$$= \sum_{u \in U_{-1}} L(u, -1) - \sum_{u \in U_{-1}} (1 - \lambda) L(u, -1) + \sum_{u \in U_{+1}} (1 - \lambda) L(u, +1).$$

We propose changing it to

$$\sum_{u \in U_{-1}} L(u, -1) + \sum_{u \in U_{-1}} (1 - \lambda) L(u, +1) + \sum_{u \in U_{+1}} (1 - \lambda) L(u, +1)$$

$$= \sum_{u \in U_{-1}} L(u, -1) + \sum_{u \in U_{-1} \cup U_{+1}} (1 - \lambda) L(u, +1).$$

The union of the two sets $U_{+1} \cup U_{-1}$ allows us to train unwanted data detectors without needing to strictly differentiate between desired and unwanted data within the world corpus, providing a solution to the complexities involved in dataset construction

Our proposed loss function

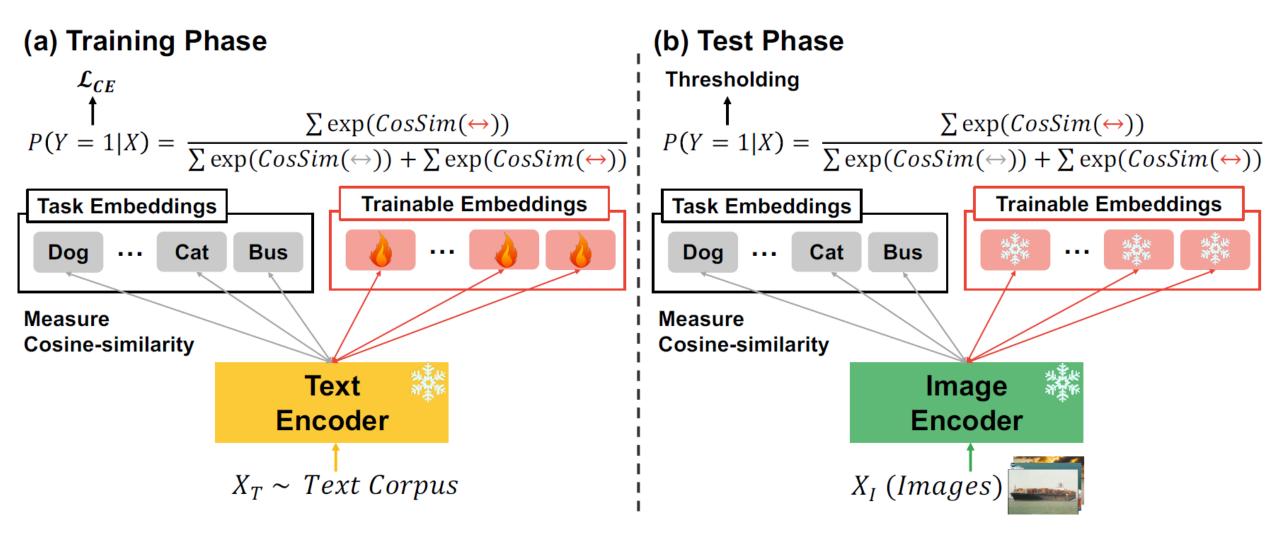
- We incorporate the concept of focal loss into our loss function to further encourage the formation of the decision boundary near the in-distribution.
- Our proposed loss can thus be defined as:

Definition 1. Let $B_{-1} = \{x_i\}_{i=1}^N$ and $B = \{\tilde{x}_i\}_{i=1}^N$ denote mini-batches that are respectively drawn from the specified in-distribution and the overall data distribution. Let L be the cross-entropy loss. Then our proposed loss function is

$$\sum_{x_i \in B_{-1}} L\left(x_i, -1\right) + \left(1 - \lambda\right) \sum_{x_j \in B} \beta_j L\left(x_j, +1\right); \ \beta_j = \frac{N\alpha_j}{\sum_{x_k \in B} \alpha_k} \text{ and } \alpha_j = \left(1 - p\left(x_j\right)\right)^{\gamma}.$$

• $\gamma \ge 0$ is a hyper-parameter of the focal loss.

Hassle-Free Textual Training (HFTT)



Application 1: Out-of-Distribution Detection (in-distribution=ImageNet)

OOD Dataset											
Method	iNaturalist		SUN		Places		Texture		Average		
	FPR	AUROC	FPR	AUROC	FPR	AUROC	FPR	AUROC	FPR	AUROC	
In-distribution images required											
Mahalanobis	99.33	55.89	99.41	59.94	98.54	65.96	98.46	64.23	98.94	61.51	
MSP	40.17	89.76	63.99	79.40	63.50	80.19	67.01	79.33	58.67	82.17	
KNN	29.17	94.52	35.62	92.67	39.61	91.02	64.35	85.67	42.19	90.97	
NPOS	16.58	96.19	43.77	90.44	45.27	89.44	46.12	88.80	<u>37.94</u>	<u>91.22</u>	
	In-distribution images not required										
Energy	34.70	90.55	32.33	90.58	40.29	89.32	51.24	72.36	39.64	85.70	
MaxLogit	35.03	89.46	32.86	90.33	41.15	89.60	68.17	75.63	44.30	86.26	
ZOC	87.30	86.09	81.51	81.20	73.06	83.39	98.90	76.46	85.19	81.79	
MCM	34.33	91.36	32.27	91.86	47.48	88.68	50.90	87.52	41.25	89.86	
HFTT (ours)	<u>27.44</u>	93.27	19.24	95.28	43.54	90.26	43.08	88.23	33.33	91.76	

Application 2: Hateful Image Detection (in-distribution=Antisemitic/Islamophobic)

Method	iNaturalist		SUN		nnocuous Datase Places		et Texture		NINCO		Average	
	FPR	AUROC	FPR	AUROC	FPR	AUROC	FPR	AUROC	FPR	AUROC	FPR	AUROC
Energy	12.30	97.53	3.88	98.51	13.87	97.40	39.70	94.98	26.89	96.12	17.43	97.10
MaxLogit	23.65	96.89	18.49	97.49	27.84	96.48	33.33	96.00	33.03	95.99	25.82	96.71
ZOC	87.76	71.05	66.51	85.23	69.96	82.57	65.48	83.22	81.06	78.36	74.15	84.09
MCM	80.53	76.70	87.54	69.38	81.37	74.12	60.39	84.97	81.95	78.00	77.45	76.29
CLIPN	47.71	92.78	36.36	95.16	40.62	94.52	53.36	92.36	68.40	89.58	49.29	92.88
NegLabel	0.03	99.84	1.09	99.10	5.16	98.50	3.56	98.82	12.62	97.86	4.49	98.82
HFTT (ours)	0.17	99.44	1.05	99.13	4.38	98.60	1.73	99.08	4.18	98.52	1.83	99.06

Wrap-Up

- We eliminate the need to build an image dataset for training unwanted visual data detectors by using pre-trained vision-language models.
- We introduce a new loss function. Its use eliminates the need for labor in annotating outdistribution data.
- We empirically analyze HFTT, a method composed of the above proposals. Our experiments show that HFTT is effective in a range of scenarios, from traditional OOD detection to situations involving abstract concepts, like the identification of hateful images.

