

Absorb & Escape: Overcoming Single Model Limitations in Generating Genomic Sequences

Zehui Li¹, Yuhao Ni¹, Guoxuan Xia¹, William Beardall¹, Akashaditya Das¹, Guy-Bart Stan¹, Yiren Zhao¹

¹Imperial College London

IMPERIAL

Limitations of Existing Single-Model Approaches in Generating DNA

AutoRegressive (AR) Models Suppose a heterogeneous sequence x consist of two homogeneous segments of length k, then $\mathbf{x} = \{\{x_1, x_2, \dots, x_k\}, \{x_{k+1}, x_{k+2}, \dots, x_{2k}\}\}$. AR models factorize $p(\mathbf{x})$ into conditional probability in eq. (4); consider the case where the true factorisation of p(x) follows eq. (5).

$$p^{AR}(\mathbf{x}) = p_{\theta}(x_1) p_{\theta}(x_2|x_1) \cdots p_{\theta}(x_k|\mathbf{x}_{1:k-1}) \cdot p_{\theta}(x_{k+1}|\mathbf{x}_{1:k}) p_{\theta}(x_{k+2}|\mathbf{x}_{1:k+1}) \cdots p_{\theta}(x_{2k}|\mathbf{x}_{1:2k-1})$$
(4)

$$p^{data}(\mathbf{x}) = \underbrace{p_1(x_1)p_1(x_2|x_1)\cdots p_1(x_k|\mathbf{x}_{1:k-1})}_{\text{Segment 1}} \cdot \underbrace{p_2(x_{k+1})p_2(x_{k+2}|\mathbf{x}_{k+1})\cdots p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{k+2}|\mathbf{x}_{k+1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})p_2($$

Limitations of Existing Single-Model Approaches in Generating DNA

- AR Model may struggle to disassociate the elements of the second segment from the first segment
- Sufficient data is needed for AR model to learn two segments are independent

$$p^{AR}(\mathbf{x}) = p_{\theta}(x_1) p_{\theta}(x_2|x_1) \cdots p_{\theta}(x_k|\mathbf{x}_{1:k-1}) \cdot p_{\theta}(x_{k+1}|\mathbf{x}_{1:k}) p_{\theta}(x_{k+2}|\mathbf{x}_{1:k+1}) \cdots p_{\theta}(x_{2k}|\mathbf{x}_{1:2k-1})$$
(4)

$$p^{data}(\mathbf{x}) = \underbrace{p_1(x_1)p_1(x_2|x_1)\cdots p_1(x_k|\mathbf{x}_{1:k-1})}_{\text{Segment 1}} \cdot \underbrace{p_2(x_{k+1})p_2(x_{k+2}|\mathbf{x}_{k+1})\cdots p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{k+2}|\mathbf{x}_{k+1})p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{x}_{k+1:2k-1})}_{\text{Segment 2}} \underbrace{p_2(x_{2k}|\mathbf{$$

Limitations of Existing Single-Model Approaches in Generating DNA

How about diffusion model?

- DMs estimate the overall probability distribution p(x) without factorization
- However, the removal of the conditional dependence assumption may also decrease the accuracy of generation within each homogeneous segment

Limitations of Existing Single-Model: Toy Example

	HyenaDNA	DISCDIFF
# IS TOKENS \downarrow	812	0
# IT TOKENS \downarrow	3,586	110,192

IS Tokens: illegal Start Token

IS Tokens: illegal Transition Token

Number of Incorret Tokens on Synthetic Dataset.

Solution to Single Molde Limitations: Model Composition

Compositional Generative Modeling: A Single Model is Not All You Need

Yilun Du¹ Leslie Kaelbling¹

But Energy Based Model is Slow ...

Solution to Single Molde Limitations: Model Composition

Algorithm 2 Fast Absorb & Escape Algorithm

- 14: **end if**
- 15: end for
- 16: **Output:** $\tilde{\mathbf{x}}$ with improved quality

Results: transcription profile conditioned promoter sequence design

Method	MSE↓
Bit Diffusion (bit-encoding)*	.0414
Bit Diffusion (one-hot encoding)*	.0395
D3PM-uniform*	.0375
DDSM*	.0334
Language Model*	.0333
Linear FM*	.0281
Dirichlet FM (DFM)*	.0269
Dirichlet FM distilled (DFM distilled)*	.0278
A&E (Language Model+Dirichlet FM distilled)	.0262

Multi-species Promoter Generation

Results: Unconditional Generation

Μ	odel	EPD(256bp)			EPD(2048bp)		
Μ	odel	S-FID↓	Cor_TATA↑	MSE_TATA↓	S-FID↓	Cor_TATA↑	MSE_TATA↓
VA	λE	295.0	-0.167	26.5	250.0	0.007	9.40
Bi	tDiffusion	405	0.058	5.29	100.0	0.066	5.91
D	3PM(small)	97.4	0.0964	4.97	94.5	0.363	1.50
D	3PM(large)	161.0	-0.208	4.75	224.0	0.307	8.49
D	DSM(TimeDilation)	504.0	0.897	13.4	1113.0	0.839	2673.7
D	iscDiff(Ours)	57.4	0.973	0.669	45.2	0.858	1.74
A	&E(Ours)	3.21	0.975	0.379	4.38	0.892	0.528

Results: Species-wise Conditional Generation (Motif Distribution)

Results: Species-wise Conditional Generation (Gene Integration)

Figure 5: Evaluation of Generated Promoters for gene regulation through Genome Integration

	TP53 ↓	EGFR↓	AKT1↓
Random	278.18	8.09	65.70
A&E	17.21	0.28	1.65
Hyena	36.25	0.89	2.88
DiscDiff	124.03	2.17	25.50

IMPERIAL

Absorb & Escape: Overcoming Single Model Limitations in Generating

Genomic Sequences

Zehui Li¹, Yuhao Ni¹, Guoxuan Xia¹, William Beardall¹, Akashaditya Das¹, Guy-Bart Stan¹, Yiren Zhao¹

¹Imperial College London

1. Motivation

AutoRegressive (AR) Models and Diffusion Models (DMs) both have their limitations.

- **AR Models:** *Sufficient data* is needed for AR model to learn independence in the data
- **DMs:** DMs are less competent than AR models for discrete data generation

2. Contribution

Our contribution is three-fold:

- a) Study the properties of AR models and DMs in DNA sequence generation
- b) Introduce **Absorb & Escape (A&E)**: a novel approach for DNA generation combining the strengths of AR models and DMs.
- c) Demonstrate Fast A&E's superior performance across 15 species.

4. Results

Evaluation of transcription profile conditioned promoter sequence design.

Method	MSE↓
Bit Diffusion (bit-encoding)*	.0414
Bit Diffusion (one-hot encoding)*	.0395
D3PM-uniform*	.0375
DDSM*	.0334
Language Model*	.0333
Linear FM*	.0281
Dirichlet FM (DFM)*	.0269
Dirichlet FM distilled (DFM distilled)*	.0278

A&E (Language Model+Dirichlet FM distilled) .0262

References

Avdeyev (2023) Dirichlet diffusion score model for biological sequence generation. In International Conference on Machine Learning (pp. 1276-1301). PMLR.

Stark, Hannes (2024) "Dirichlet flow matching with applications to dna sequence design." In International Conference on Machine Learning