

MVInpainter: Learning Multi-View Consistent Inpainting to Bridge 2D and 3D Editing

Chenjie Cao^{1,2,3}, Chaohui Yu^{2,3}, Fan Wang^{2,3}, Xiangyang Xue¹, Yanwei Fu^{1*} ¹Fudan University, ²DAMO Academy, Alibaba Group, ³Hupan Lab {caochenjie.ccj,huakun.ych,fan.w}@alibaba-inc.com {xyxue,yanweifu}@fudan.edu.cn

Chenjie Cao

Chaohui Yu

Fan Wang

Xiangyang Xue

Yanwei Fu

Removal, insertion, and replacement

Original multi-view images

Point clouds (5s)

3DGS (3min)

Removing foregrounds

Object insertion

Challenges

- 3D object generation struggles to generalize to scene-level editing
- Novel view synthesis methods have difficulty generalizing across various categories
- Instance-level 3D editing is time-consuming
- Heavy reliance on explicit camera poses

Focusing object-centric synthetic data

Limited scene categories

Time-consuming

Explicit camera requirements

Key motivation

2D-inpainting enjoys good performance with large text-to-image models

Original image

Reference 1

MVInpainter enables 3D editing with a **multi-view consistent inpainting** manner, effectively extending 2D generation into 3D scenarios.

Consistency and identity preserving

Reference 2

The overall framework of MVInpainter

[1] Guo Y, Yang C, Rao A, et al. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. ICLR, 2024.

Motion Priors from Video Models

Reference and masked inputs

Without video priors (AnimateDiff)

With video priors (AnimateDiff)

Reference Key&Value Concatenation (Ref-KV)

(b) Ref-KV of the self-attention block in U-Net

達摩院

With Ref-KV

Pose-Free Flow Grouping

We utilize the slot-attention to learn high-level flow features for implicit camera control

Flow grouping outperforms dense flow! (avoiding overfitting inaccurate flow estimation)

Inference Pipline

How to achieve mask locations in inference?

Mask Adaption

(b) Masking adaption

(c) Perspective warping of the object plane

Assumption: the 3D box's bottom face and the basic plane on which the object is placed must be the same plane So these two planes share the same perspective transformation

- Training setup: 8 A800 GPUs; batch size 64; learning rate 1e-4; MVInpainter-O 100k steps; MVInpainter-F 60k steps; dynamic frame fine-tuneing 10k steps
- Metrics: PSNR, SSIM, LPIPS, CLIP-score, FID, KID, and DINOv2 similarity (DINO-A, DINO-M)
- Training frame numbers: frame number 12; dynamic frame number 8~24
- Datasets:
- Object-centric: Co3D, MVImgNet
- ➢ Forward-facing: DL3DV, Real10k, Scannet++

Object-centric NVS results										
CO3D+MVImgNet Omni3D (zero-shot)										
ZeroNVS 64	12.44	0.606	41.90	0.981	0.6028	9.38	0.627	82.81	5.421	0.5451
LeftRefill [7]	18.29	0.310	38.06	0.491	0.6605	17.09	0.272	27.81	0.775	0.6279
Ours	20.25	0.185	17.56	0.154	0.8182	19.19	0.153	16.40	0.345	0.7667

Forward-facing inpainting results

	SPInNeRF (removal)				Scannet+Real10K+DL3DV (inpainting)				
	$ PSNR\uparrow$	LPIPS↓	FID↓	DINO-A↑	DINO-M↑	PSNR↑	LPIPS↓	FID↓	KID↓
LaMa [70]	28.62	0.054	15.26	0.8909	0.6019	17.61	0.337	38.47	0.981
MAT [37]	27.05	0.067	28.81	0.8727	0.5760	15.47	0.377	37.38	0.899
SD-inpaint [59]	26.98	0.070	19.32	0.8556	0.4422	13.54	0.417	38.67	1.048
LeftRefill [7]	30.29	0.102	18.02	0.8931	0.5652	15.14	0.380	38.06	1.334
ProPainter [102]	31.72	0.047	12.25	0.8757	0.5534	20.42	0.306	61.76	2.642
Ours	28.87	0.036	7.66	0.8972	0.5937	20.91	0.173	15.58	0.252

Object-centric NVS

Object removal

Compared to NeRF Editing

	PSNR↑	LPIPS↓	FID↓	DINO-S↑	DINO-L↑
Ours	28.87	0.036	7.66	0.8972	0.5937
SPIn-NeRF	25.82	0.084	38.13	0.8681	0.6350

Object replacement

Scene editing

"Background"

"Background"

"Teddy Bear's Head"

"Chocolate Cake"

"Hotdog with Tomato Paste"

"Orange Shoe"

3DGS reconstruction

We initialize the point cloud through Dust3R or MVS. The 3DGS is optimized by L1, SSIM, and masked LPIPS losses

(a) Point clouds

(b) Test view w/o LPIPS

(c) Test view with LPIPS

NVS results

3DGS results

Robustness of mask adaption

Table 3: Ablation studies on CO3D. 'w.o. inp' means the baseline without the inpainting formulation.

	PSNR ↑	LPIPS↓	CLIP↑
Baseline	17.16	0.305	0.750
Baseline (w.o. inp)	14.35	0.443	0.648
+AnimateDiff	17.31	0.308	0.756
+Ref-KV	17.90	0.283	0.773
+Object mask	18.64	0.250	0.796
+Flow emb	18.93	0.240	0.798

	PSNR↑	LPIPS↓	CLIP↑
No Flow	18.64	0.250	0.796
Dense Flow	18.53	0.247	0.792
Slot2D Flow (time-emb)	18.74	0.244	0.798
Slot2D Flow (cross-attn)	18.81	0.245	0.796
Slot3D Flow (cross-attn)	18.93	0.240	0.798

(a) Ablation results of different proposed components

(b) Ablation of various strategies to inject flow guidance

Table 5: Ablation study of the baseline method with inpainting formulation, and without inpainting formulation (SD-blend and SD-NVS).

	PSNR ↑	LPIPS↓	CLIP↑
SD-blend	14.35	0.443	0.648
SD-NVS	11.61	0.663	0.677
Baseline	17.16	0.305	0.750

Table 8: Inference time cost tested on A800 NVIDIA GPU. The view number is 24, while all inputs are resized into 256×256 .

Methods	Ours	AnimateDiff	Nerfiller	LeftRefill
DDIM steps	50	50	20	50
Time	11.5s	10.1s	32.4s	33.0s

Summary

- MVInpainter is a multi-view consistent inpainting method to expand 2D generations into 3D scenes by multi-view object removal, insertion, and replacement.
- Motion initialization based on video priors and Ref-KV are presented to facilitate the structure and appearance consistency respectively.
- MVInpainter is camera-free. The flow grouping based on the slot-attention is used to encourage implicit motion control.