
TinyTTA: Efficient Test-time Adaptation via Early-
exit Ensembles on Edge Devices

Hong Jia, Young D. Kwon, Alessio Orsino, Ting Dang, Domenico Talia and Cecilia Mascolo

AI/Deep Learning on Edge Devices

Deploy ML on edge devices becomes popular:
 real-time data analysis and low-latency responses

 e.g., Real-time human health monitoring and robotics

Realistic Scenarios
Adaptive ML is essential

Learn once

Deploy once

Static ML
New data (no labels)

Adjust model
parameters

Test-Time Adaptation

Test-time adaptation (TTA) is a practical solution but challenging

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are
supported on MCUs

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are
supported on MCUs

MCUNet

2. Adjust model parameters is expensive
in terms of memory and computation

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are
supported on MCUs

MCUNet

2. Adjust model parameters is expensive
in terms of memory and computation

3. Poor performance with small batch size
when computational resources are limited

Prior Works & Limitations

Finetune-based

• Update entire model

• Suffer from intensive
 memory usage

Prior Works & Limitations

Finetune-based

• Update entire model

• Suffer from intensive
 memory usage

Modulating-based

• Update normalization
 layers only and freeze
 other layers

• Suffer from intensive
 memory usage

Prior Works & Limitations

Finetune-based

• Update entire model

• Suffer from intensive
 memory usage

Modulating-based

• Update normalization
 layers only and freeze
 other layers

• Suffer from intensive
 memory usage

Memory-efficient TTA

• Update enabled with
 low memory on GPUs

• Remain memory
intensive on CPUs

Prior Works & Limitations

Finetune-based

• Update entire model

• Suffer from intensive
 memory usage

Modulating-based

• Update normalization
 layers only and freeze
 other layers

• Suffer from intensive
 memory usage

Memory-efficient TTA

• Update enabled with
 low memory on GPUs

• Remain memory
intensive on CPUs

• Model collapse with batch size of one

• Normalization layers are unavailable on MCUs

TinyTTA

Online Single Sample
On-device TTA

Severity 1

(c) WS normalization
Block-wise Memory

Freezed Ensembled

Backward forward cat bird dog cat bird dogcat bird dog

Severity 3 Severity 5

TinyTTA
Batch NormCNN

Pretrained model
(e.g., MCUNet)

Exit (a)(b)(c)(d)WS(μ,𝜎) Linear Exit Exit

(a) Self-ensemble (d) TinyTTA
Engine

(b) Early-exits

MCU

MPUExit

• Efficient, batch-agnostic, and robust TTA on edge devices

TinyTTA

Online Single Sample
On-device TTA

Severity 1

(c) WS normalization
Block-wise Memory

Freezed Ensembled

Backward forward cat bird dog cat bird dogcat bird dog

Severity 3 Severity 5

TinyTTA
Batch NormCNN

Pretrained model
(e.g., MCUNet)

Exit (a)(b)(c)(d)WS(μ,𝜎) Linear Exit Exit

(a) Self-ensemble (d) TinyTTA
Engine

(b) Early-exits

MCU

MPUExit

• Efficient, batch-agnostic, and robust TTA on edge devices

• Early-exit ensemble to co-optimize memory footprint and accuracy

• TinyTTA Engine to enable TTA on MCUs

Batch-Agnostic Early-exit Ensembles
• Co-optimizes memory footprint and accuracy

high activation memory low memory

high weight memory

low memoryhigh activation memory

(a) Fine-tuning per-layer memory usage

(b) Modulating per-layer memory usage

Batch-Agnostic Early-exit Ensembles
• Co-optimizes memory footprint and accuracy

high activation memory low memory

high weight memory

low memoryhigh activation memory

(a) Fine-tuning per-layer memory usage

(b) Modulating per-layer memory usage

Batch-Agnostic Early-exit Ensembles
• Co-optimizes memory footprint and accuracy

high activation memory low memory

high weight memory

low memoryhigh activation memory

(a) Fine-tuning per-layer memory usage

(b) Modulating per-layer memory usage

Batch-Agnostic Early-exit Ensembles
• Co-optimizes memory footprint and accuracy

high activation memory low memory

high weight memory

low memoryhigh activation memory

(a) Fine-tuning per-layer memory usage

(b) Modulating per-layer memory usage

TinyTTA Engine

• First-of-its-kind TTA engine on MCUs

• Optimized to mitigate resource limitations during TTA

forward graph

fuse op

fp32 fp32

fuse op

autodiff

backward graph

quantize
graph

fuse op

compile time

fp32 fp32

backward graph

freeze&
quantize

freeze&
quantize

freeze&
quantize Load

online sensor
reading

TTA

(a) TinyTTA processed model (b) autodiff (c) ensemble graph (d) on-device TTA

execution time

exit exit
Norm

CNN
Linear

TinyTTA Engine

• First-of-its-kind TTA engine on MCUs

• Optimized to mitigate resource limitations during TTA

forward graph

fuse op

fp32 fp32

fuse op

autodiff

backward graph

quantize
graph

fuse op

compile time

fp32 fp32

backward graph

freeze&
quantize

freeze&
quantize

freeze&
quantize Load

online sensor
reading

TTA

(a) TinyTTA processed model (b) autodiff (c) ensemble graph (d) on-device TTA

execution time

exit exit
Norm

CNN
Linear

• BP operators support for Tensorflow Lite Micro

• Layer-wise update strategy to optimize memory efficiency

Experimental Setup

• Datasets

• Architectures

• Baselines
(1) CIFAR10C
(2) CIFAR100C
(3) OfficeHome
(4) PACS

(1) MCUNet
(2) MobileNetV2_×05
(3) EfficientNet_b1
(4) RegNet-200m

(1) Tent (Modulating)
(2) Tent (Finetune)
(3) EATA
(4) CoTTA
(5) EcoTTA

• Hardwares
(1) MCU: STM32H747
(2) MPU: RaspberryPi Zero 2 W

Results

57.6%
better

accuracy

6x
Smaller
memory

TinyTTA achieves up to 57.6% higher
accuracy compared to TENT

(Modulating) with a batch size of one

TinyTTA achieves up to 6x lower memory
usage compared to CoTTA with a batch

size of one

Results

CIFAR10C CIFAR100C OfficeHome PACS

50

60

70

Ac
cu
ra
cy 60.2

47.3

53.1
56.1

64.3

51.6

58.3

63.6
62.4

49.1

55.2
58.2

67.5

53.3

61.7

65.7

60.4

48.4

54.5
57.5

65.3

52.6

59.6
62.6

59.1

45.8

51.6
53.6

63.8

50.5

54.4
57.3

MCUNet
MCUNet+TinyTTA

EfficientNet
EfficientNet+TinyTTA

MobileNet
MobileNet+TinyTTA

RegNet
RegNet+TinyTTA

TinyTTA achieves an average of 4.3% higher
accuracy compared to a model without update

with a batch size of one

TinyTTA is the only framework capable of
performing TTA under an MCU's 512 KB

memory constraint

Summary & Take-away Messages

S1. TinyTTA enables efficient, batch-agnostic and robust on-
device TTA for the first time

T1. Self-ensemble framework and early-exit policy is effective in
ensuring high TTA accuracy

T2. TinyTTA Engine enables TTA for diverse MCU applications

Thank you!

Any questions?
You can find me at:

hong.jia@unimelb.edu.au
h-jia.github.io

mailto:hong.jia@unimelb.edu.au
http://h-jia.github.io

