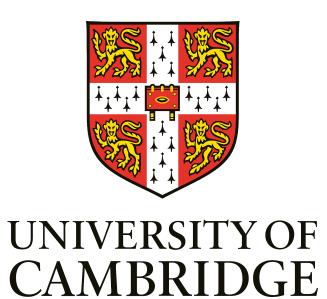
TinyTTA: Efficient Test-time Adaptation via Earlyexit Ensembles on Edge Devices

Hong Jia, Young D. Kwon, Alessio Orsino, Ting Dang, Domenico Talia and Cecilia Mascolo



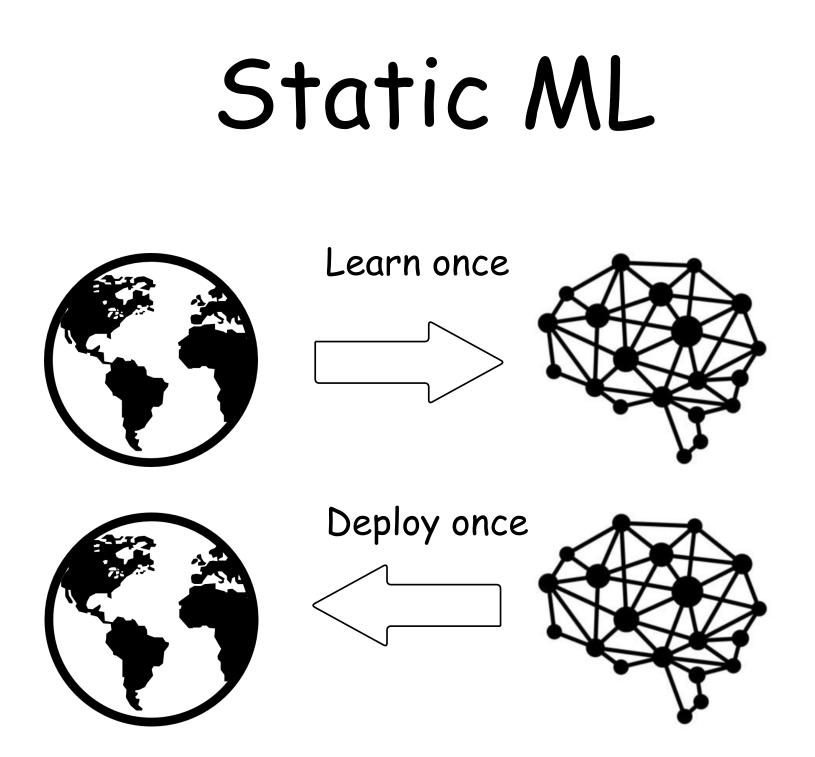
SAMSUNG Research

AI/Deep Learning on Edge Devices

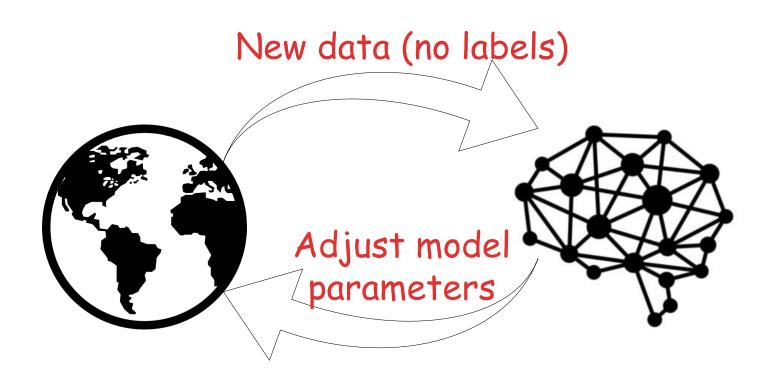
 Deploy ML on edge devices becomes popular: real-time data analysis and low-latency responses
e.g., Real-time human health monitoring and robotics

Realistic Scenarios

- Adaptive ML is essential
- Test-time adaptation (TTA) is a practical solution but challenging



Test-Time Adaptation



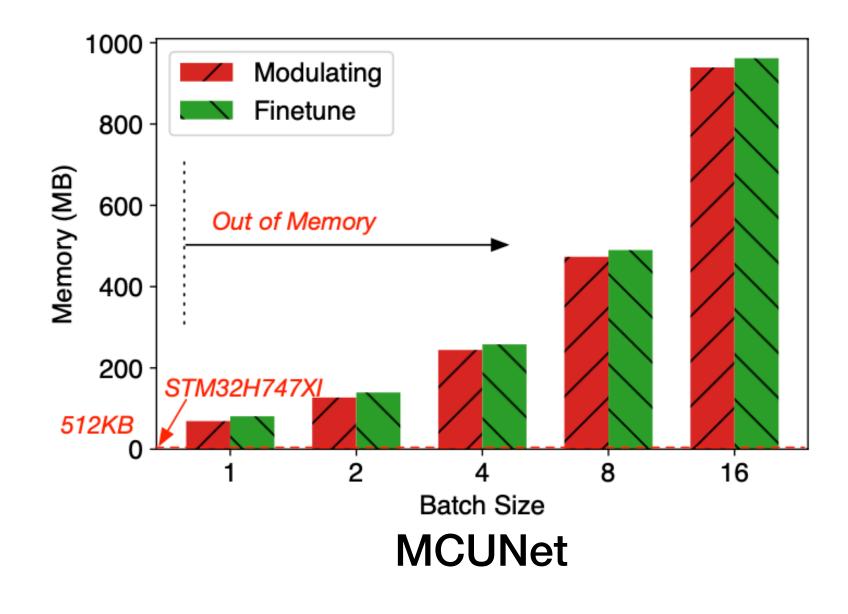
Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

2. Adjust model parameters is expensive in terms of memory and computation

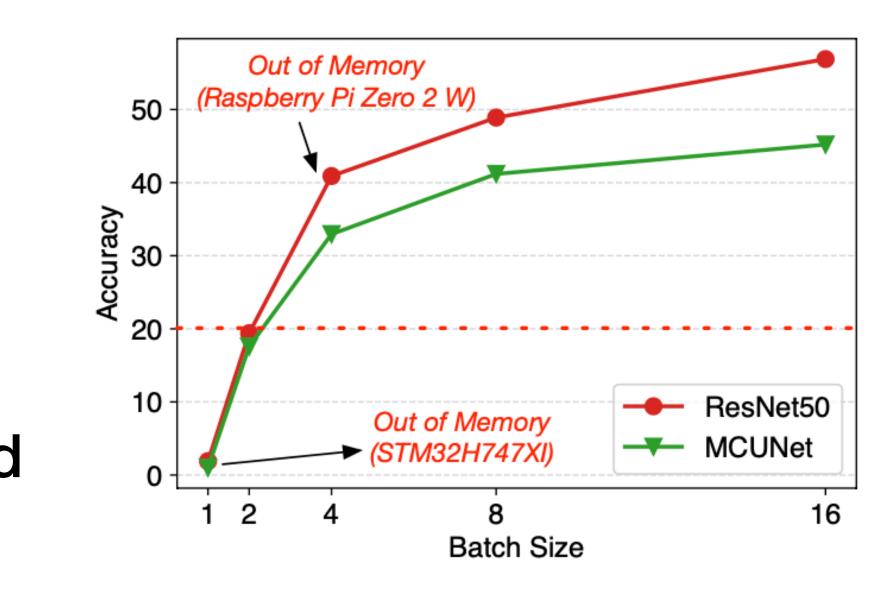


Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

2. Adjust model parameters is expensive in terms of memory and computation

3. Poor performance with small batch size when computational resources are limited



Finetune-based

• Update entire model

 Suffer from intensive memory usage

- Update normalization layers only and freeze other layers
- Suffer from intensive memory usage
- Suffer from intensive memory usage

Modulating-based

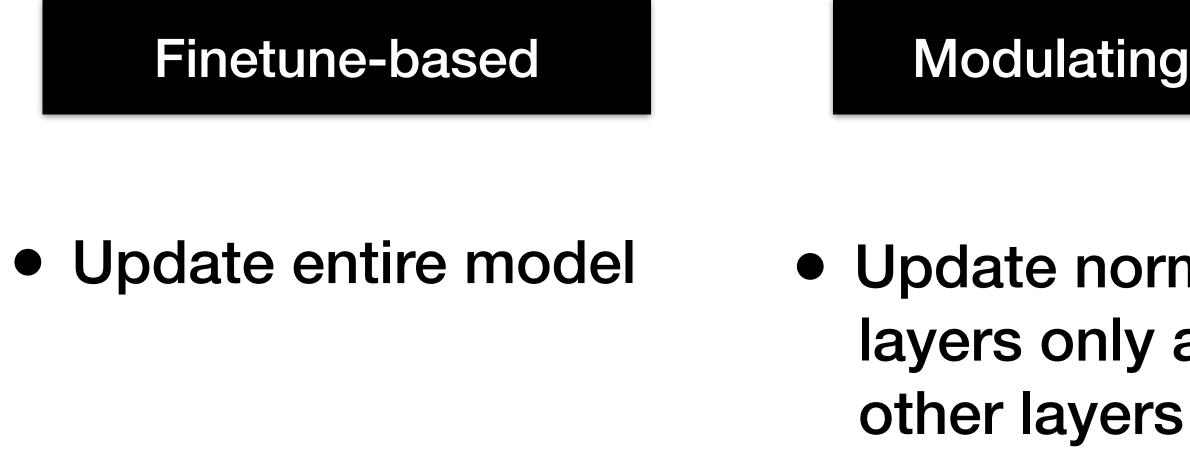
- Update normalization layers only and freeze other layers
- Suffer from intensive memory usage
- Suffer from intensive memory usage

Modulating-based

Memory-efficient TTA

• Update enabled with low memory on GPUs

• Remain memory intensive on CPUs



• Suffer from intensive • Suffer from intensive memory usage memory usage

- Model collapse with batch size of one
- Normalization layers are unavailable on MCUs

Modulating-based

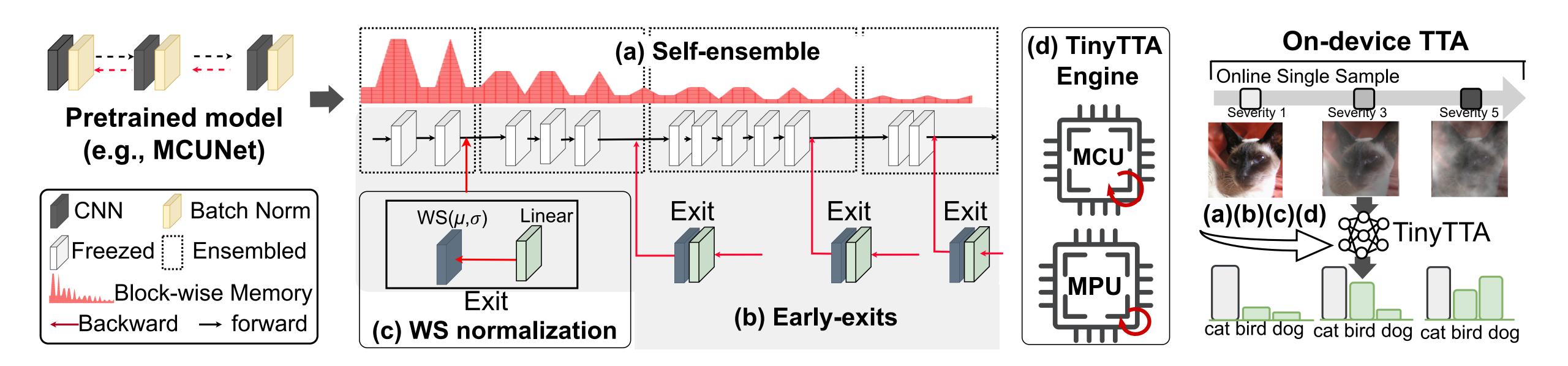
Memory-efficient TTA

- Update normalization layers only and freeze
- Update enabled with low memory on GPUs

• Remain memory intensive on CPUs

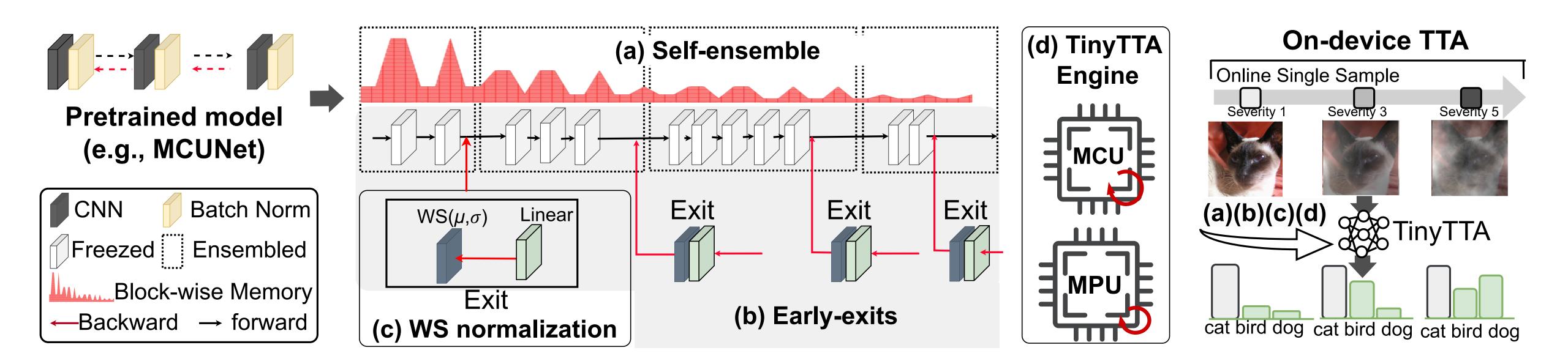
TinyTTA

• Efficient, batch-agnostic, and robust TTA on edge devices



TinyTTA

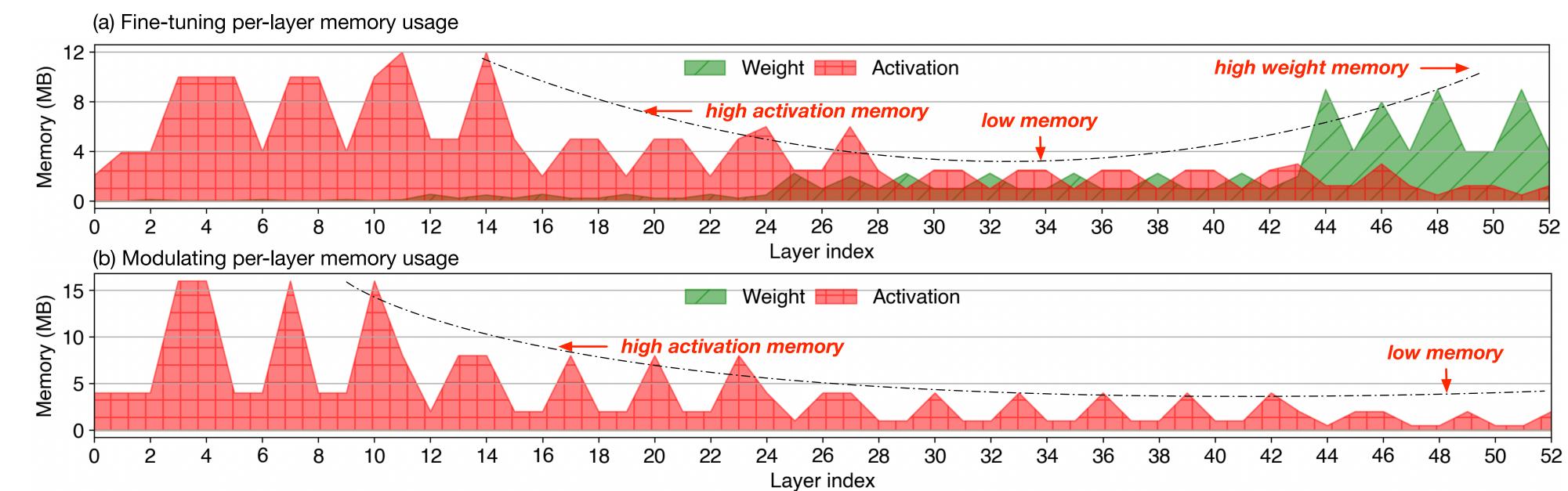
Efficient, batch-agnostic, and robust TTA on edge devices



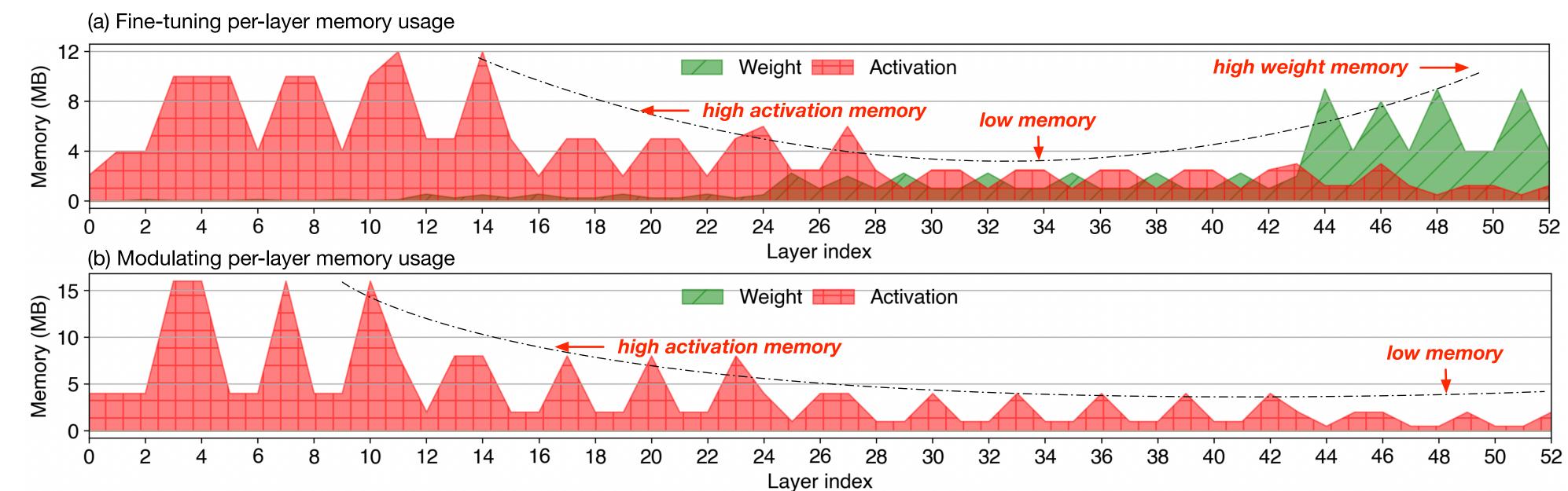
- TinyTTA Engine to enable TTA on MCUs

• Early-exit ensemble to co-optimize memory footprint and accuracy

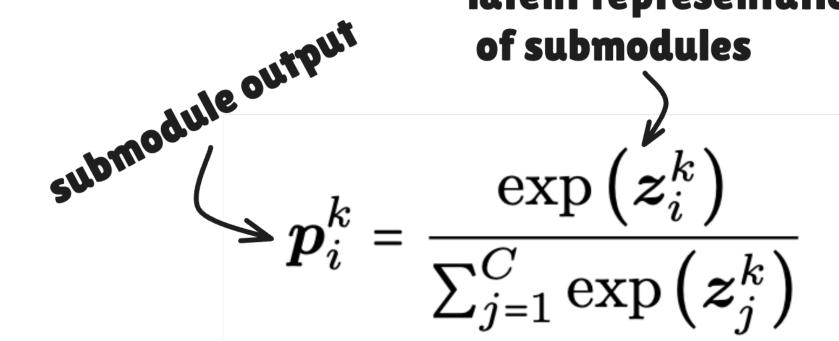
Co-optimizes memory footprint and accuracy



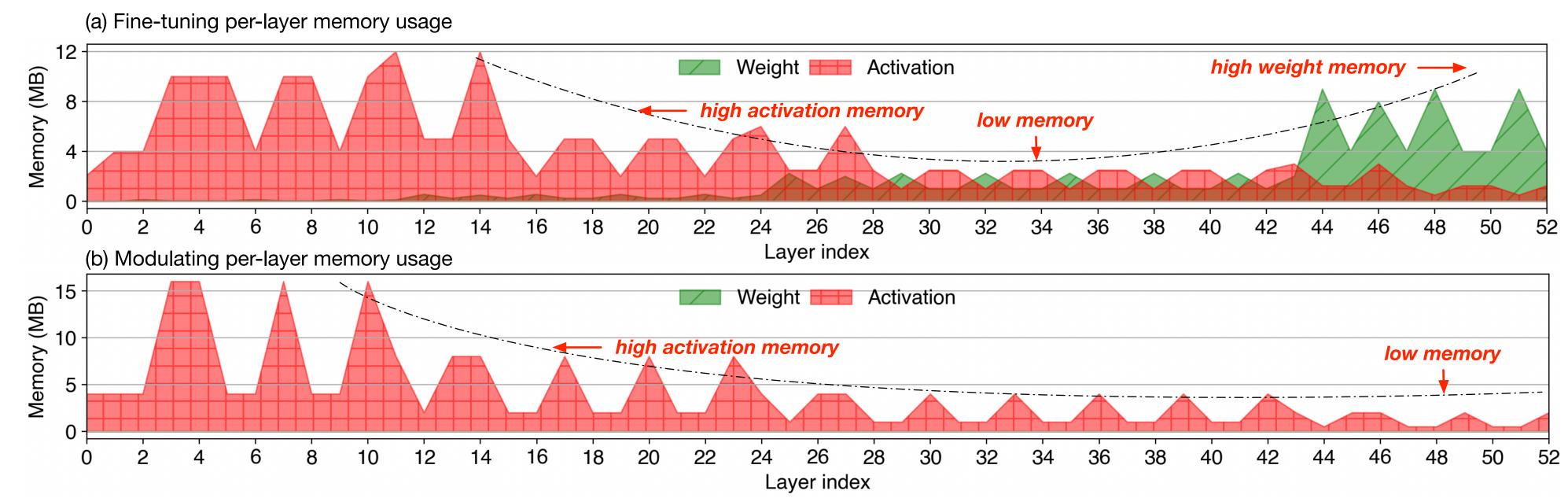
Co-optimizes memory footprint and accuracy



latent representation of submodules



Co-optimizes memory footprint and accuracy

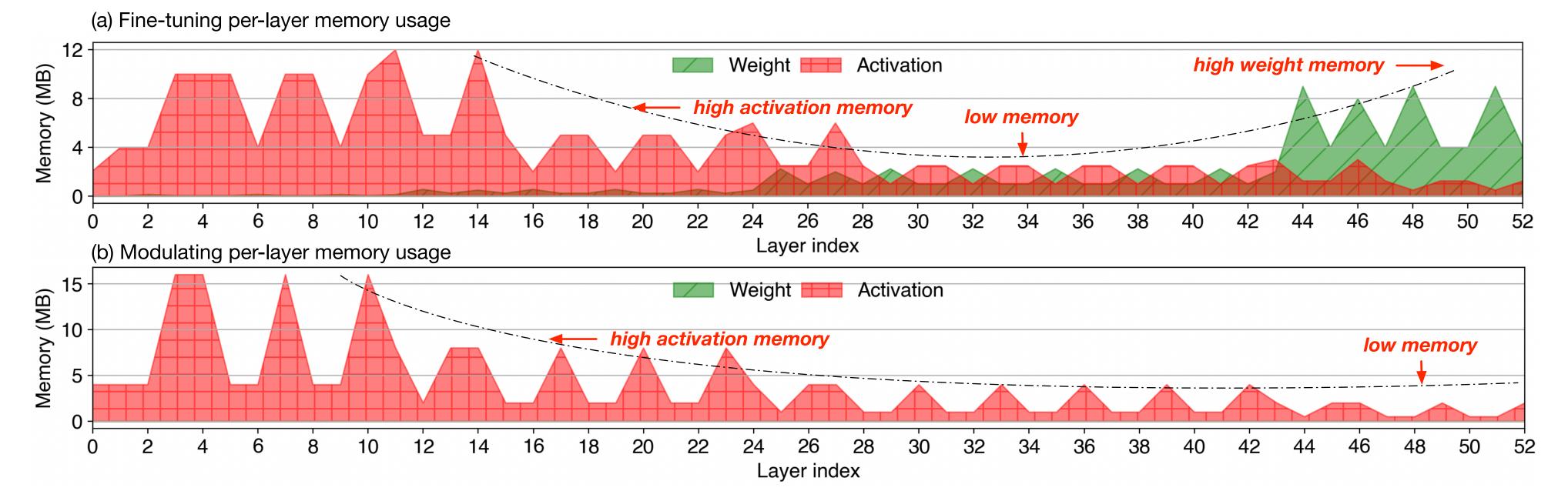


latent representation Align submodule submodule output of submodules output $oldsymbol{z}_{i}^{k}$ exp $\searrow \boldsymbol{p}_i^k = \frac{\operatorname{Comp}\left(\boldsymbol{z}_i\right)}{\sum_{j=1}^C \exp\left(\boldsymbol{z}_j^k\right)} \qquad \mathcal{L}_1 = \sum_{i=1}^C CE\left(\boldsymbol{p}_i, y\right)$

Align latent representations

$$\mathcal{L}_2 = \|\tilde{\boldsymbol{z}}_k - \boldsymbol{z}_k\|_1$$

Co-optimizes memory footprint and accuracy



 $submodule output = \frac{latent representation}{submodules} = \frac{latent representation}{of submodules} = \frac{Align submodule}{output} = \frac{latent representation}{p_i^k} = \frac{exp(\boldsymbol{z}_i^k)}{\sum_{j=1}^C exp(\boldsymbol{z}_j^k)} = \mathcal{L}_1 = \sum_{i=1}^C CE(\boldsymbol{p}_i, y)$

Align latent representations

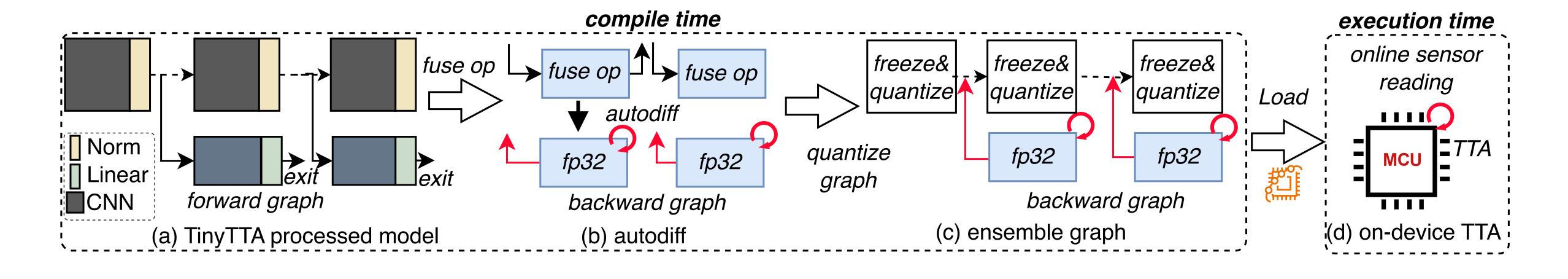
$$\mathcal{L}_2 = \|\tilde{\boldsymbol{z}}_k - \boldsymbol{z}_k\|_1$$

Weight standardization exits

$$\widetilde{\boldsymbol{W}} = \frac{\boldsymbol{W} - \boldsymbol{\mu}_w}{\boldsymbol{\sigma}_w + \boldsymbol{\epsilon}}$$

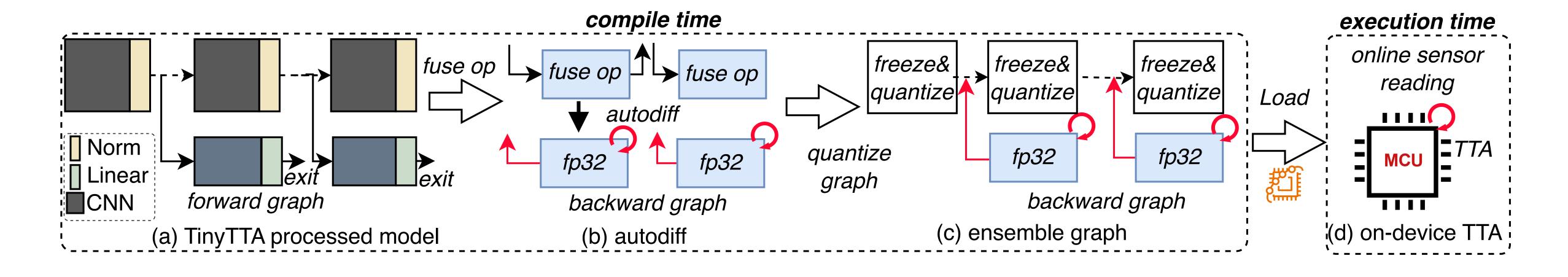
TinyTTA Engine

- First-of-its-kind TTA engine on MCUs
- Optimized to mitigate resource limitations during TTA



TinyTTA Engine

- First-of-its-kind TTA engine on MCUs
- Optimized to mitigate resource limitations during TTA



- **BP** operators support for Tensorflow Lite Micro

Layer-wise update strategy to optimize memory efficiency

Experimental Setup

- Datasets
 - (1) CIFAR10C
 - (2) CIFAR100C
 - (3) OfficeHome
 - (4) PACS

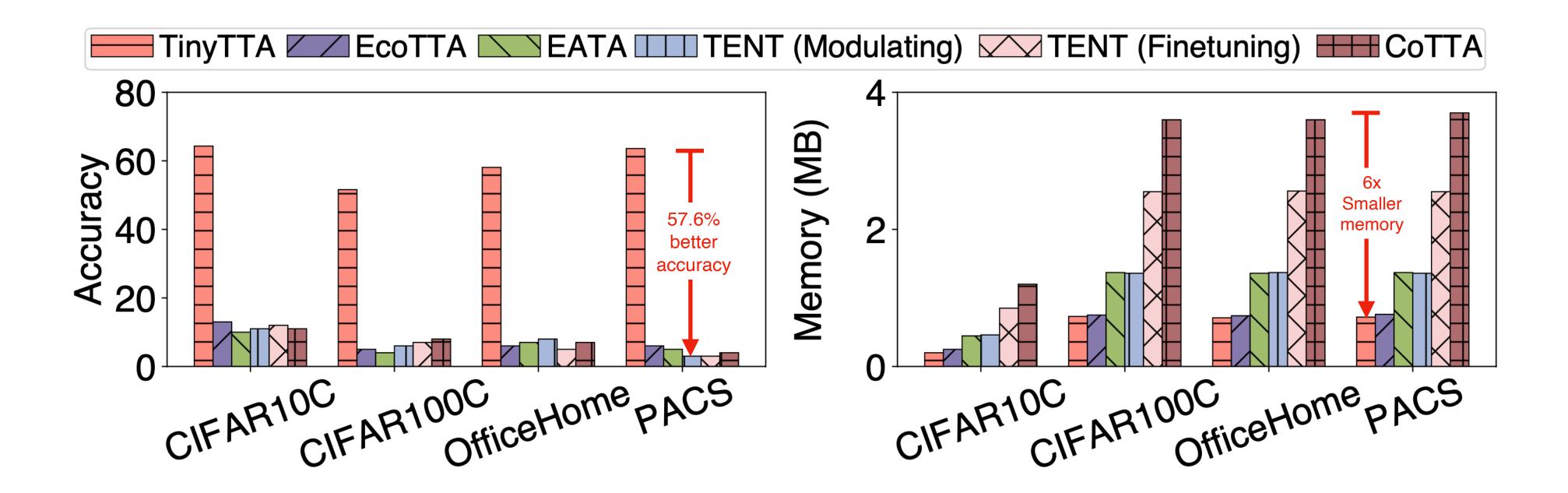
- Architectures
 - (1) MCUNet
 - (2) MobileNetV2_×05
 - (3) EfficientNet_b1
 - (4) RegNet-200m

Baselines

- (1) Tent (Modulating)
- (2) Tent (Finetune)
- (3) EATA
- (4) CoTTA
- (5) EcoTTA

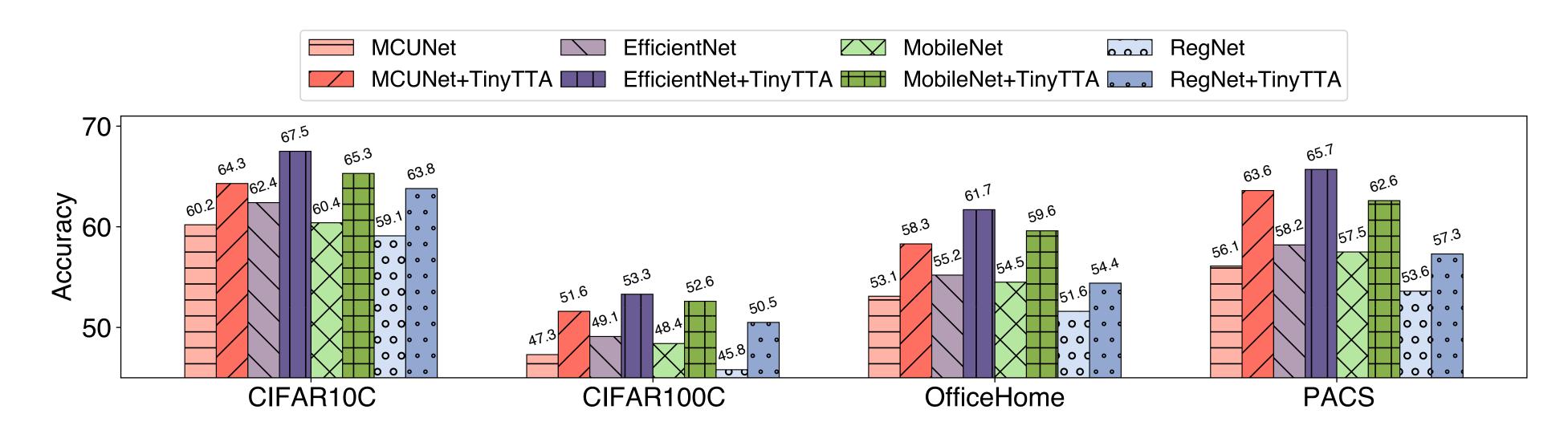
• Hardwares

- (1) MCU: STM32H747
- (2) MPU: RaspberryPi Zero 2 W



TinyTTA achieves up to 57.6% higher accuracy compared to TENT (Modulating) with a batch size of one TinyTTA achieves up to 6x lower memory usage compared to CoTTA with a batch size of one

Results



TinyTTA achieves an average of 4.3% higher accuracy compared to a model without update with a batch size of one

TinyTTA is the only framework capable of performing TTA under an MCU's 512 KB memory constraint

Table 2: MCU deployment of the baseline and TinyTTA on STM32H747 using MCUNet and CIFAR10C.

System	Accuracy	SRAM	Flash	Latency	Energy
Inference Only	60.2%	82.8KB	290KB	55.8ms	12.7mJ
TinyTTA (update)	64.3%	123KB	375KB	50.7ms	11.5mJ

Summary & Take-away Messages

S1. TinyTTA enables efficient, batch-agnostic and robust ondevice TTA for the first time

T1. Self-ensemble framework and early-exit policy is effective in ensuring high TTA accuracy

T2. TinyTTA Engine enables TTA for diverse MCU applications

Any questions? You can find me at: hong.jia@unimelb.edu.au h-jia.github.io

SAMSUNG Research

Thank you!

