TinyTTA: Efficient Test-time Adaptation via Earlyexit Ensembles on Edge Devices

Hong Jia, Young D. Kwon, Alessio Orsino, Ting Dang, Domenico Talia and Cecilia Mascolo

SAMSUNG Research

AI/Deep Learning on Edge Devices

Deploy ML on edge devices becomes popular: real-time data analysis and low-latency responses e.g., Real-time human health monitoring and robotics

Realistic Scenarios

- Adaptive ML is essential
- Test-time adaptation (TTA) is a practical solution but challenging

Static ML Learn once Deploy once V **REA**

Test-Time Adaptation

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

2. Adjust model parameters is expensive in terms of memory and computation

Unique Challenges of TTA on Edge Devices

1. No batch normalization layers are supported on MCUs

2. Adjust model parameters is expensive in terms of memory and computation

3. Poor performance with small batch size when computational resources are limited

Finetune-based

• Update entire model

• Suffer from intensive memory usage

Modulating-based

- Update normalization layers only and freeze other layers
- Suffer from intensive memory usage
- Suffer from intensive memory usage

Modulating-based

- Update normalization layers only and freeze other layers
- Suffer from intensive memory usage
- Suffer from intensive memory usage

Memory-efficient TTA

• Update enabled with low memory on GPUs

• Remain memory intensive on CPUs

Modulating-based

• Suffer from intensive memory usage • Suffer from intensive memory usage

- Model collapse with batch size of one
- Normalization layers are unavailable on MCUs
- Update normalization layers only and freeze
- Update enabled with low memory on GPUs

Memory-efficient TTA

• Remain memory intensive on CPUs

TinyTTA

• Efficient, batch-agnostic, and robust TTA on edge devices

TinyTTA

• Efficient, batch-agnostic, and robust TTA on edge devices

• Early-exit ensemble to co-optimize memory footprint and accuracy

-
- TinyTTA Engine to enable TTA on MCUs

• Co-optimizes memory footprint and accuracy

• Co-optimizes memory footprint and accuracy

latent representation of submodules

• Co-optimizes memory footprint and accuracy

latent representation **Align submodule** submodule output of submodules output (\boldsymbol{z}^k_i) \overline{C} exp $\sum_{i=1}^{k} P_i^k = \frac{C_{i}C_{i}C_{i}}{\sum_{j=1}^{C} \exp(z_i^k)}$ $\mathcal{L}_1 = \sum_{i=1}^{C} CE(p_i, y)$

Align latent representations

$$
\mathcal{L}_2 = \|\tilde{\boldsymbol{z}}_k - \boldsymbol{z}_k\|_1
$$

• Co-optimizes memory footprint and accuracy

latent representation **Align submodule** submodule output of submodules output (\boldsymbol{z}^k_i) $\, C \,$ exp $\sum_{i=1}^{k}$ $p_i^k = \frac{\exp(z_i)}{\sum_{j=1}^{C} \exp(z_j^k)}$ $\mathcal{L}_1 = \sum_{i=1}^{C} CE(p_i, y)$

Align latent representations

$$
\mathcal{L}_2 = \|\tilde{\boldsymbol{z}}_k - \boldsymbol{z}_k\|_1
$$

Weight standardization exits

$$
\widetilde{\boldsymbol{W}} = \frac{\boldsymbol{W} - \boldsymbol{\mu}_w}{\boldsymbol{\sigma}_w + \epsilon}
$$

TinyTTA Engine

- First-of-its-kind TTA engine on MCUs
- Optimized to mitigate resource limitations during TTA

TinyTTA Engine

- First-of-its-kind TTA engine on MCUs
- Optimized to mitigate resource limitations during TTA

- BP operators support for Tensorflow Lite Micro
-

• Layer-wise update strategy to optimize memory efficiency

Experimental Setup

• Baselines

- **• Datasets**
	- (1) CIFAR10C
	- (2) CIFAR100C
	- (3) OfficeHome
	- (4) PACS

- **• Architectures**
	- (1) MCUNet
	- (2) MobileNetV2_×05
	- (3) EfficientNet_b1
	- (4) RegNet-200m
- (1) Tent (Modulating)
- (2) Tent (Finetune)
- (3) EATA
- (4) CoTTA
- (5) EcoTTA

• Hardwares

- (1) MCU: STM32H747
- (2) MPU: RaspberryPi Zero 2 W

TinyTTA achieves up to 57.6% higher accuracy compared to TENT (Modulating) with a batch size of one

TinyTTA achieves up to 6x lower memory usage compared to CoTTA with a batch size of one

Results

TinyTTA achieves an average of 4.3% higher accuracy compared to a model without update with a batch size of one

TinyTTA is the only framework capable of performing TTA under an MCU's 512 KB memory constraint

Table 2: MCU deployment of the baseline and TinyTTA on STM32H747 using MCUNet and CIFAR10C.

System	Accuracy	SRAM	Flash	Latency	Energy
Inference Only	60.2%	82.8KB	290KB	55.8ms	12.7 _{mJ}
TinyTTA (update)	64.3%	123KB	375KB	50.7 _{ms}	11.5mJ

Summary & Take-away Messages

S1. TinyTTA enables efficient, batch-agnostic and robust ondevice TTA for the first time

T1. Self-ensemble framework and early-exit policy is effective in ensuring high TTA accuracy

T2. TinyTTA Engine enables TTA for diverse MCU applications

Thank you!

Any questions? You can find me at: hong.jia@unimelb.edu.au h-jia.github.io

SAMSUNG Research

