

The Collusion of Memory and Nonlinearity in Stochastic Approximation With Constant Stepsize

arxiv.org/abs/2405.16732

Lucy Huo ORIE Cornell Yixuan Zhang ISyE UW-Madison Yudong Chen CS UW-Madison Qiaomin Xie ISyE UW-Madison

November 12, 2024

• Stochastic Approximation (SA): an iterative method for root-finding and optimization (Robbins and Monro 1951)

$$\theta_{k+1} = \theta_k + \alpha_k g(\theta_k, x_k)$$

• Stochastic Approximation (SA): an iterative method for root-finding and optimization (Robbins and Monro 1951)

$$\theta_{k+1} = \theta_k + \alpha_k g(\theta_k, x_k)$$

• SGD: $g(\theta, x)$ noisy gradient estimate of the loss function

• Stochastic Approximation (SA): an iterative method for root-finding and optimization (Robbins and Monro 1951)

$$\theta_{k+1} = \theta_k + \alpha_k g(\theta_k, x_k)$$

- SGD: $g(\theta, x)$ noisy gradient estimate of the loss function
- TD-learning: policy evaluation algorithm in RL

 Stochastic Approximation (SA): an iterative method for root-finding and optimization (Robbins and Monro 1951)

$$\theta_{k+1} = \theta_k + \alpha_k g(\theta_k, x_k)$$

- SGD: $g(\theta, x)$ noisy gradient estimate of the loss function
- TD-learning: policy evaluation algorithm in RL
- Solve for equation E_{x∼π}[g(θ*, x)] = 0, where π is the stationary distribution of (x_k)_{k>0}

 Stochastic Approximation (SA): an iterative method for root-finding and optimization (Robbins and Monro 1951)

$$\theta_{k+1} = \theta_k + \alpha_k g(\theta_k, x_k)$$

- SGD: $g(\theta, x)$ noisy gradient estimate of the loss function
- TD-learning: policy evaluation algorithm in RL
- Solve for equation E_{x∼π}[g(θ*, x)] = 0, where π is the stationary distribution of (x_k)_{k>0}
- Constant stepsize $\alpha_k \equiv \alpha$
 - Fast initial convergence, easy hyperparameter tuning

 θ_k vs. θ^* ? Algorithmic implications?

Problem Set-up

$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$

- $(x_k)_{k\geq 0}$ is a Markov chain
 - Uniform ergodicity
 - e.g., all irreducible, aperiodic, finite-state Markov chain
 - Reinforcement learning, correlated data
- Strongly convex (non-linear) g + Smoothness
 - L₂-regularized logistic regression
 - Smooth ReLU regression

• Constant stepsize + Markovian $(x_k)_{k\geq 0}$

$$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$$

• $(x_k, \theta_k)_{k \ge 0}$ is a time-homogeneous Markov chain

NeurIPS 2024

Lucy Huo

Main Contribution

• Constant stepsize + Markovian $(x_k)_{k\geq 0}$

$$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$$

- $(x_k, \theta_k)_{k \ge 0}$ is a time-homogeneous Markov chain
- Convergence? How fast is the convergence? Weak convergence. Unique limiting stationary distribution. Geometrically fast.

• Constant stepsize + Markovian $(x_k)_{k\geq 0}$

$$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$$

- $(x_k, \theta_k)_{k \ge 0}$ is a time-homogeneous Markov chain
- Convergence? How fast is the convergence? Weak convergence. Unique limiting stationary distribution. Geometrically fast.
- Bias characterization $\mathbb{E}\left[\theta_k \theta^*\right] = ?$
 - Insights for algorithm design

• Constant stepsize + Markovian $(x_k)_{k\geq 0}$

$$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$$

- $(x_k, \theta_k)_{k \ge 0}$ is a time-homogeneous Markov chain
- Convergence? How fast is the convergence?
 Weak convergence. Unique limiting stationary distribution.
 Geometrically fast.
- Bias characterization $\mathbb{E}\left[\theta_k \theta^*\right] = ?$
 - Insights for algorithm design
- Existing analysis for constant stepsize:
 - i.i.d. data + non-linear g (Dieuleveut, Durmus, and Bach 2020)
 - Markovian data + linear g (Huo, Chen, and Xie 2023)

• Constant stepsize + Markovian $(x_k)_{k>0}$

$$\theta_{k+1} = \theta_k + \alpha g(\theta_k, x_k)$$

- $(x_k, \theta_k)_{k\geq 0}$ is a time-homogeneous Markov chain
- Convergence? How fast is the convergence? Weak convergence. Unique limiting stationary distribution. Geometrically fast.
- Bias characterization $\mathbb{E}\left[\theta_k \theta^*\right] = ?$
 - Insights for algorithm design
- Existing analysis for constant stepsize:
 - i.i.d. data + non-linear g (Dieuleveut, Durmus, and Bach 2020) \neq Markovian data Markovian data + linear g + non-linear g
 - Markovian data + linear g (Huo, Chen, and Xie 2023)

Asymptotic Bias Expansion

Theorem 1

For some vectors $b_n,\ b_m,\ and\ b_c,\ that\ are\ independent\ of \ \alpha,\ we have the expansion$

$$\mathbb{E}[\theta_{\infty}^{(\alpha)}] = \theta^* + \alpha \Big(b_{\mathsf{n}} + b_{\mathsf{m}} + b_{\mathsf{c}} \Big) + \mathcal{O}\Big(\alpha^{3/2} \Big),$$

where

- *b*_n nonlinearity of *g* (*Dieuleveut*, *Durmus*, and Bach 2020)
- b_m Markovian correlation of (x_k) (Huo, Chen, and Xie 2023)
- *b*_c *Markovian* correlation × nonlinearity

NeurIPS 2024

Lucy Huo

Implications for Algorithm Design

• Polyak-Ruppert (PR) averaging

$$ar{ heta}_k := rac{1}{k/2}\sum_{t=k/2}^{k-1} heta_t$$

PR-averaging will reduce variance, but not the bias.

NeurIPS 2024

Lucy Huo

Implications for Algorithm Design

• Polyak-Ruppert (PR) averaging

$$ar{ heta}_k := rac{1}{k/2}\sum_{t=k/2}^{k-1} heta_t$$

PR-averaging will reduce variance, but not the bias.

• To reduce bias, use Richardson-Romberg (RR) extrapolation

$$\widetilde{ heta}_k = 2 \overline{ heta}_k^{(lpha)} - \overline{ heta}_k^{(2lpha)}$$

$$\begin{split} \mathbb{E}\left[\widetilde{\theta}_{\infty}\right] &= 2\mathbb{E}\left[\theta_{\infty}^{(\alpha)}\right] - \mathbb{E}\left[\theta_{\infty}^{(2\alpha)}\right] \\ &= 2\left(\theta^* + \alpha B^{(1)} + \mathcal{O}(\alpha^{3/2})\right) - \left(\theta^* + 2\alpha B^{(1)} + \mathcal{O}((2\alpha)^{3/2})\right) \\ &= \theta^* + \mathcal{O}(\alpha^{3/2}). \end{split}$$

Numerical Example

Figure: Presence of Bias in PR and Benefits of RR

- Interplay between Markovian data and the nonlinearity in stochastic approximation (SA) with constant stepsize.
- Practical insights for improving SA algorithms.

Thank You

