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Stochastic Approximation

• Stochastic Approximation (SA): an iterative method for
root-finding and optimization (Robbins and Monro 1951)

θk+1 = θk + αkg(θk , xk)

• SGD: g(θ, x) noisy gradient estimate of the loss function
• TD-learning: policy evaluation algorithm in RL

• Solve for equation Ex∼π[g(θ
∗, x)] = 0,

where π is the stationary distribution of (xk)k≥0
• Constant stepsize αk ≡ α

• Fast initial convergence, easy hyperparameter tuning

θk vs. θ∗? Algorithmic implications?
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Problem Set-up

θk+1 = θk + αg(θk , xk)

• (xk)k≥0 is a Markov chain
• Uniform ergodicity

e.g., all irreducible, aperiodic, finite-state Markov chain
• Reinforcement learning, correlated data

• Strongly convex (non-linear) g + Smoothness
• L2-regularized logistic regression
• Smooth ReLU regression
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Main Contribution

• Constant stepsize + Markovian (xk)k≥0

θk+1 = θk +αg(θk , xk)

• (xk , θk)k≥0 is a time-homogeneous Markov chain

• Convergence? How fast is the convergence?
Weak convergence. Unique limiting stationary distribution.
Geometrically fast.

• Bias characterization E [θk − θ∗] = ?
• Insights for algorithm design

• Existing analysis for constant stepsize:
• i.i.d. data + non-linear g

(Dieuleveut, Durmus, and Bach 2020)
• Markovian data + linear g

(Huo, Chen, and Xie 2023)

̸= Markovian data
+ non-linear g
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Asymptotic Bias Expansion

Theorem 1

For some vectors bn, bm, and bc, that are independent of α, we
have the expansion

E[θ(α)∞ ] = θ∗ + α
(
bn + bm + bc

)
+O

(
α3/2

)
,

where
• bn – nonlinearity of g (Dieuleveut, Durmus, and Bach 2020)
• bm – Markovian correlation of (xk) (Huo, Chen, and Xie 2023)
• bc – Markovian correlation × nonlinearity
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Implications for Algorithm Design

• Polyak-Ruppert (PR) averaging

θ̄k :=
1

k/2

k−1∑
t=k/2

θt

PR-averaging will reduce variance, but not the bias.

• To reduce bias, use Richardson-Romberg (RR) extrapolation

θ̃k = 2θ̄(α)k − θ̄
(2α)
k

E
[
θ̃∞

]
= 2E

[
θ(α)∞

]
− E

[
θ(2α)∞

]
= 2

(
θ∗ + αB(1) +O(α3/2)

)
−
(
θ∗ + 2αB(1) +O((2α)3/2)

)
= θ∗ +O(α3/2).
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Numerical Example
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Figure: Presence of Bias in PR and Benefits of RR
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Conclusion

• Interplay between Markovian data and the nonlinearity in
stochastic approximation (SA) with constant stepsize.

• Practical insights for improving SA algorithms.
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