

Continual Learning in the Frequency Domain

Ruiqi Liu^{1,2}, Boyu Diao^{1,2}, Libo Huang¹, Zijia An^{1,2}, Zhulin An^{1,2}, Yongjun Xu^{1,2}

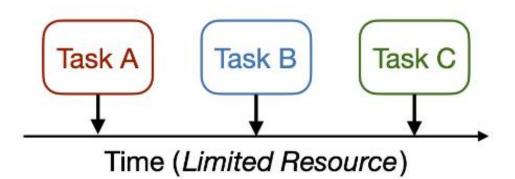
¹Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences

> Introduction

Continual Learning

Continual learning is designed to help models learn new tasks while retaining

knowledge from previous tasks.



Challenges

- Catastrophic Forgetting
- Resource Constraints

Continual learning requires adapting to incremental tasks with dynamic data distributions^[1]

[1] Wang, Liyuan, et al. "A comprehensive survey of continual learning: theory, method and application.", *IEEE TPAMI*, 2024.

> Related work & Challenges

Catastrophic Forgetting

- Regularization-based methods constrain the updates to essential parameters of the model, thereby preserving important knowledge across tasks.
- Architecture-based methods introduce task-specific components or allocate new parameters for each new task.
- Rehearsal-based methods continuously replay samples from previous tasks to ensure that knowledge is retained.

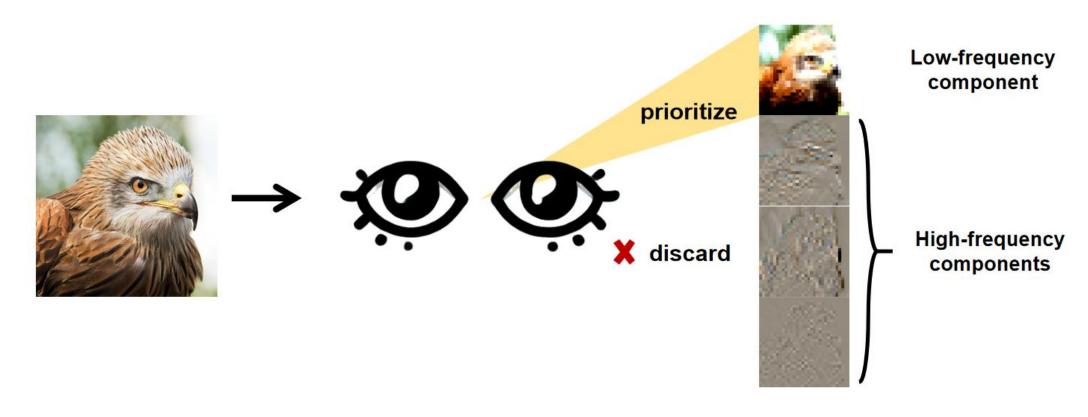
> Related work & Challenges

Resource Constraints

Limited Memory, Storage, and Processing Capabilities

Rehearsal-based methods struggle on edge devices due to limited memory for storing samples and constrained computational resources, impacting both learning accuracy and training efficiency.

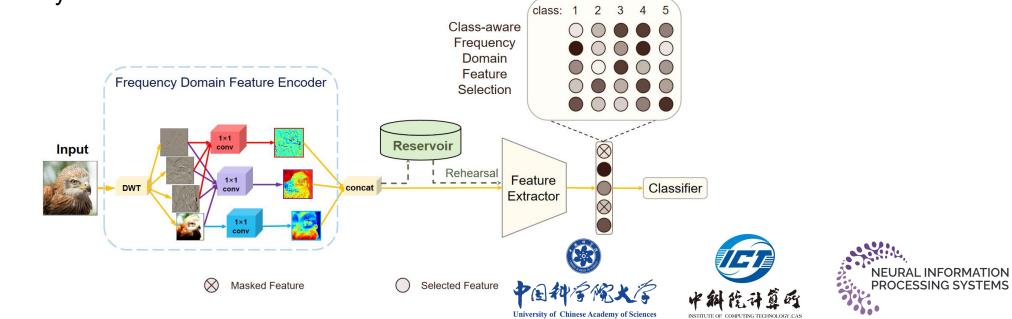
> Motivation



The human visual system (HVS) has evolved to handle information efficiently by focusing on essential low-frequency components and disregarding less critical details, serving as an inspiration for our framework.

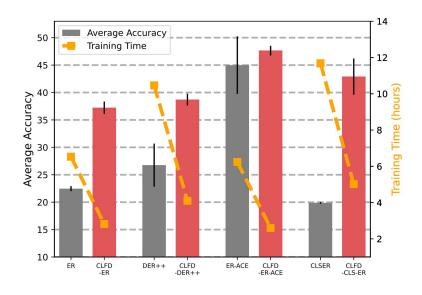
> Method

- Continual Learning in the Frequency Domain
 - The Frequency Domain Feature Encoder (FFE)
 - Using wavelet transforms, FFE maps input images into the frequency domain, allowing us to reduce input feature sizes without major information loss.
 - The Class-aware Frequency Domain Feature Selection (CFFS)
 - CFFS balances feature reusability and minimizes interference by selecting frequency components based on class similarity.



Experiments

Achieving substantial improvements in training speed, memory usage, and accuracy, demonstrating practical feasibility for real-world applications.

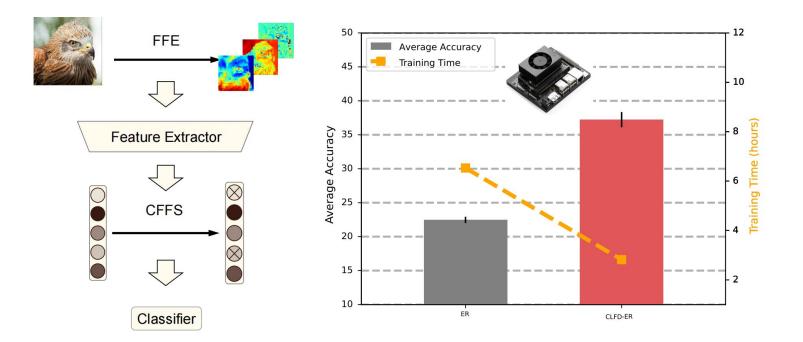


Buffer	Method	S-CIFAR-10			S-Tiny-ImageNet		
		Class-IL	Task-IL	Mem	Class-IL	Task-IL	Mem
	JOINT	92.20±0.15	98.31±0.12	-	59.99±0.19	82.04±0.10	-
	SGD	19.62±0.05	61.02±3.33	-	7.92±0.26	18.31±0.68	-
-	oEWC [41]	19.49±0.12	68.29±3.92	530MB	7.58±0.10	19.20±0.31	970MH
	SI [50]	19.48±0.17	68.05±5.91	573MB	6.58±0.31	36.32±0.13	1013M
	LwF [30]	19.61±0.05	63.29±2.35	316MB	8.46±0.22	15.85±0.58	736MI
50	ER [38]	29.42±3.53	86.36±1.43	497MB	8.14±0.01	26.80±0.94	1333M
	DER++ [6]	42.15±7.07	83.51±2.48	646MB	8.00±1.16	23.53±2.67	1889M
	ER-ACE [7]	40.96±6.00	85.78±2.78	502MB	6.68±2.75	35.93±2.66	1314M
	CLS-ER [4]	45.91±2.93	89.71±1.87	1016MB	11.09±11.52	40.76±9.17	3142M
50	CLFD-ER	45.56±3.71	84.45±0.85	205MB	7.61±0.03	34.67±1.91	514M
	CLFD-DER++	51.02±2.76	81.15±1.92	241MB	10.69±0.27	31.55±0.39	658MI
	CLFD-ER-ACE	52.74±1.91	87.13±0.41	204MB	10.71±2.91	38.05±11.98	514M
	CLFD-CLS-ER	50.13±3.67	85.30±1.01	401MB	12.61±0.95	37.80±3.08	1032M
125	ER [38]	38.49±1.68	89.12±0.92	497MB	8.30±0.01	34.82±6.82	1333M
	DER++ [6]	53.09±3.43	88.34±1.05	646MB	11.29±0.19	32.92±2.01	1889M
	ER-ACE [7]	56.12±2.12	90.49±0.58	502MB	11.09±3.86	41.85±3.46	1314M
	CLS-ER [4]	53.57±2.73	90.75±2.76	1016MB	16.35±4.61	46.11±7.69	3142M
125	CLFD-ER	55.76±1.85	88.29±0.16	205MB	8.89±0.07	42.40±0.83	514M
	CLFD-DER++	58.81±0.29	84.76±0.66	241MB	15.42±0.37	40.94±1.30	658MI
	CLFD-ER-ACE	58.68±0.66	89.35±0.34	204MB	15.88±2.51	44.71±10.54	514MI
	CLFD-CLS-ER	59.98±1.38	87.09±0.43	401MB	18.73±0.91	49.75±2.01	1032M

> Conclusion

Continual Learning in the Frequency Domain

• Our framework leverages frequency domain transformations for efficient continual learning, addressing both catastrophic forgetting and the unique resource limitations of edge computing.



Continual Learning in the Frequency Domain

Thank You!

https://github.com/EMLS-ICT CAS/CLFD.git For further details, feel free to get in touch with us liuruiqi23@mails.ucas.ac.cn

https://arxiv.org/abs/2410.06 645