Adaptive Sampling for Efficient Softmax Approximation

Tavor Z. Baharav* Broad Institute

Ryan Kang*

Stanford

Colin Sullivan* SEI

David

Tse

Eric Luxenberg

Gridmatic

Mert Pilanci

Мо

Tiwari

Stanford

Background

- ChatGPT queries use **1GWh**¹ and cost OpenAI **\$700k**² daily
- The fully-connected layer w/ softmax $\sigma(Ax)$ is the one of most common and expensive operations in deep learning³
- Existing methods make distributional assumptions and provide no approximation guarantees⁴
 - Hierarchical softmax
 - Differentiated softmax
 - Target sampling

¹ "Q&A: UW researcher discusses just how much energy ChatGPT uses." UW News

² "The Inference Cost Of Search Disruption – Large Language Model Cost Analysis." SemiAnalysis

³ "Neural information retrieval: at the end of the early years." Information Retrieval Journal

⁴ "Strategies for Training Large Vocabulary Neural Language Models." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

Contributions & Results

- 1. Propose AdaSoftmax, the first PAC estimation of $\sigma(Ax)$
- 2. Provide several variance-reducing tricks
- 3. Demonstrate the efficacy of AdaSoftmax in practice

Dataset (Model)	$\delta = 10\%$	$\delta = 5\%$	$\delta = 1\%$	
EuroSAT (VGG-19)	5.18x (80.62%)	5.16x (83.00%)	4.54x (98.37%)	Com
MNIST (Shallow CNN)	8.95x (92.25%)	8.81x (93.75%)	8.13x (99.38%)	

Computer Vision

Dataset (Model)	$\delta = 10\%$	$\delta = 5\%$	$\delta = 1\%$	
Wikitext (GPT-2)	8.25x (88.94%)	7.80x (93.54%)	6.67x (98.26%)	
Wikitext (Llama3-7B)	14.68x (91.44%)	11.43x (94.04%)	6.88x (99.38%)	
Wikitext (Mistral7B)	32.65x (89.08%)	26.37x (91.20%)	17.71x (97.77%)	LLMs
Penn Treebank (GPT-2)	8.10x (81.68%)	7.50x (90.73%)	6.66x (96.79%)	
Penn Treebank (Llama3-7B)	19.18x (87.82%)	16.57x (91.60%)	10.72x (97.81%)	

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm

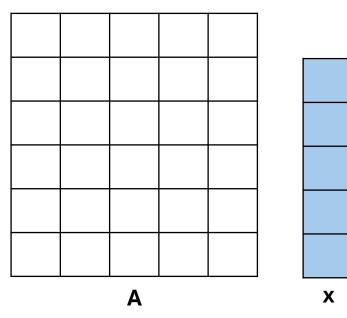
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



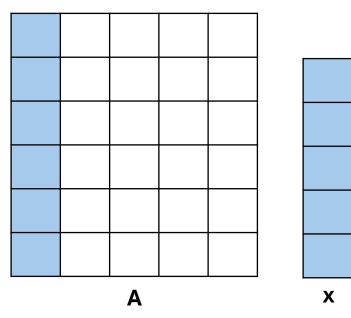
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



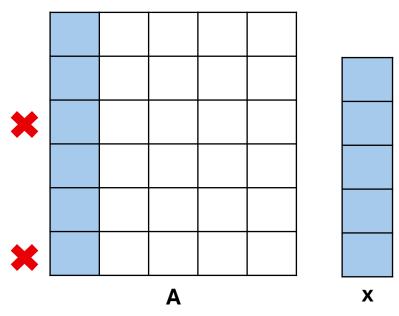
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



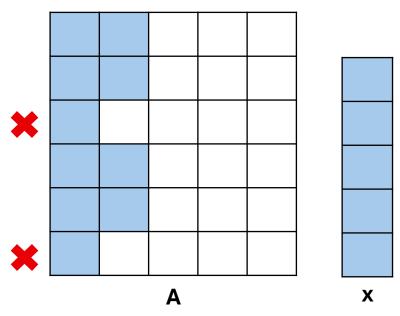
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



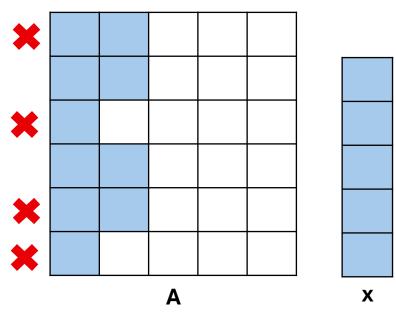
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



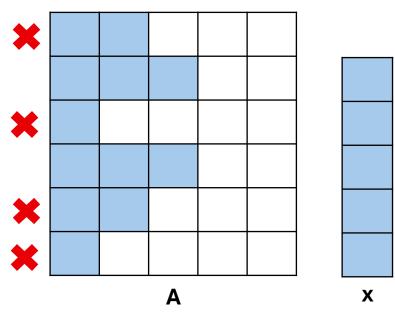
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



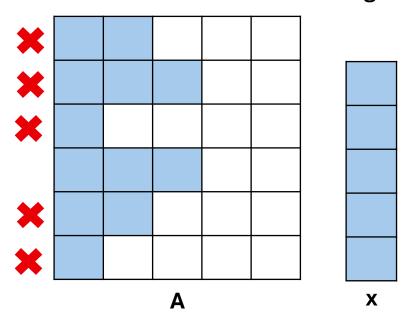
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



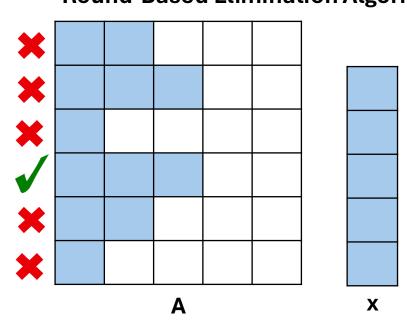
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



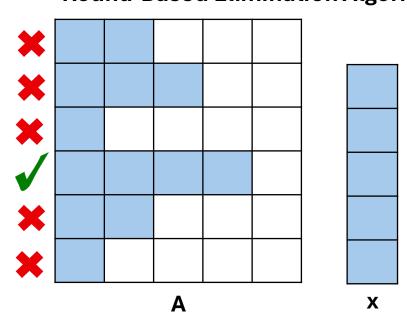
Norm. Estimation

Estimate the partition function

Top-k Estimation

Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



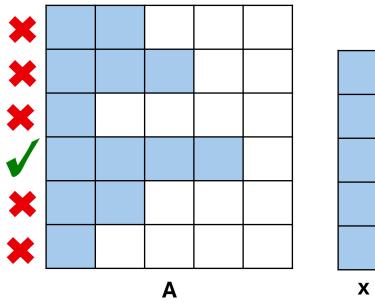
Norm. Estimation

Estimate the partition function

Top-k Estimation

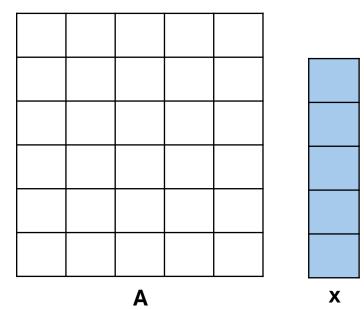
Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



Norm. Estimation

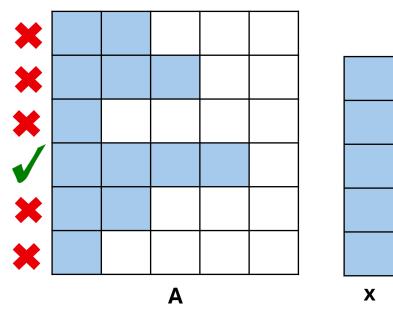
Estimate the partition function



Top-k Estimation

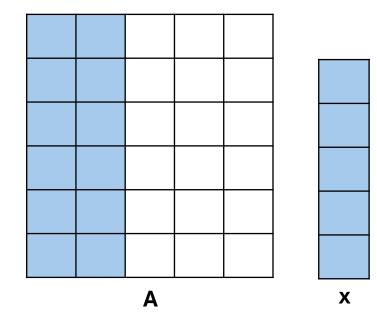
Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



Estimate the partition function

Two-Stage Estimate



Neural Information Processing Systems 2024

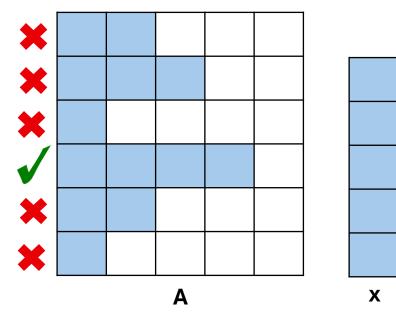
Top-k Estimation

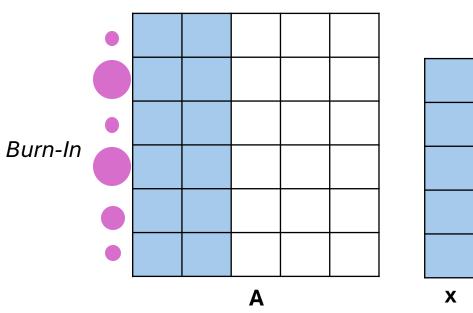
Identify the k row(s) with the highest logits

Norm. Estimation

Estimate the partition function

Round-Based Elimination Algorithm





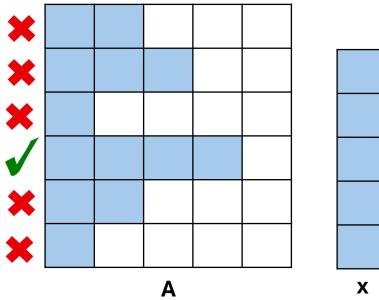
Two-Stage Estimate

Neural Information Processing Systems 2024

Top-k Estimation

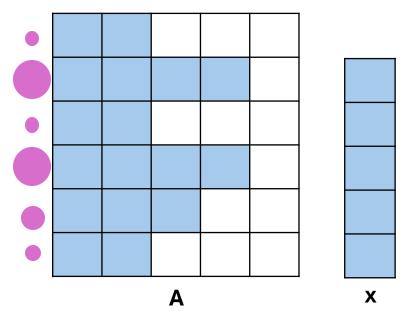
Identify the k row(s) with the highest logits

Round-Based Elimination Algorithm



Norm. Estimation

Estimate the partition function



$$T \le C\sigma^2 \left(\beta^2 n \log\left(\frac{n}{\delta}\right) + \sum_{i=1}^n \frac{\log\left(\frac{n\log d}{\delta}\right)}{\Delta_i^2} + \frac{\beta^2 \log\left(\frac{n}{\delta}\right) \left(\sum_j \gamma_j\right)^2}{\epsilon \sum_j \alpha_j} + \frac{\beta^2 \log(1/\delta)}{\epsilon^2} \right),$$

Theorem 1. For input $\varepsilon \in (0, 1/2)$, $\delta \in (0, 1)$, and σ satisfying Assumption 1, Algorithm 1 identifies the largest component in $\sigma_{\beta}(Ax)$ and estimates its value to a multiplicative accuracy of ϵ with probability at least $1 - \delta$, as in (4). On this success event, the algorithm uses T samples where

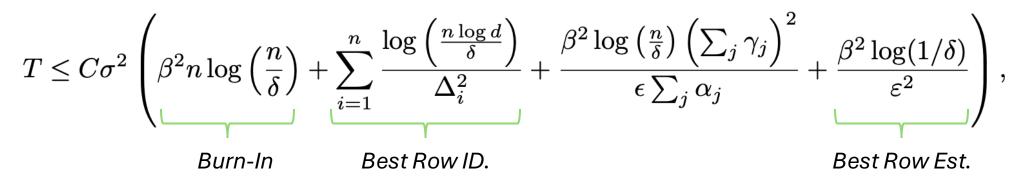
$$T \leq C\sigma^2 \left(\beta^2 n \log\left(\frac{n}{\delta}\right) + \sum_{i=1}^n \frac{\log\left(\frac{n\log d}{\delta}\right)}{\Delta_i^2} + \frac{\beta^2 \log\left(\frac{n}{\delta}\right) \left(\sum_j \gamma_j\right)^2}{\epsilon \sum_j \alpha_j} + \frac{\beta^2 \log(1/\delta)}{\epsilon^2} \right),$$

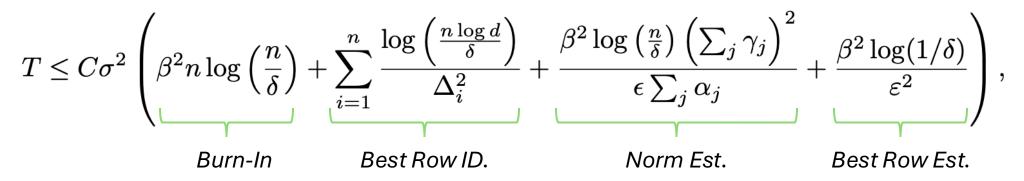
Best Row ID.

$$T \leq C\sigma^{2} \left(\beta^{2} n \log\left(\frac{n}{\delta}\right) + \sum_{i=1}^{n} \frac{\log\left(\frac{n \log d}{\delta}\right)}{\Delta_{i}^{2}} + \frac{\beta^{2} \log\left(\frac{n}{\delta}\right) \left(\sum_{j} \gamma_{j}\right)^{2}}{\epsilon \sum_{j} \alpha_{j}} + \frac{\beta^{2} \log(1/\delta)}{\varepsilon^{2}} \right),$$

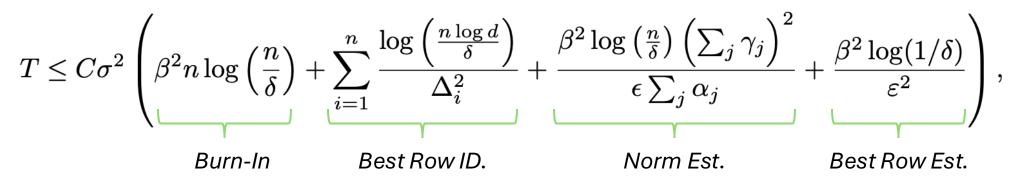
$$Best Row ID.$$

$$Best Row Est.$$





Theorem 1. For input $\varepsilon \in (0, 1/2)$, $\delta \in (0, 1)$, and σ satisfying Assumption 1, Algorithm 1 identifies the largest component in $\sigma_{\beta}(Ax)$ and estimates its value to a multiplicative accuracy of ϵ with probability at least $1 - \delta$, as in (4). On this success event, the algorithm uses T samples where



Assuming the gap is not too small, this simplifies to...

$$T \le C\beta^2 \sigma^2 \left(\log\left(\frac{n}{\delta}\right) \left(n + \varepsilon^{-1}\right) + \varepsilon^{-2} \log(1/\delta) \right)$$

Reducing Sample Variance

Naïve Sampling

Choose columns of A at random

Importance Sampling

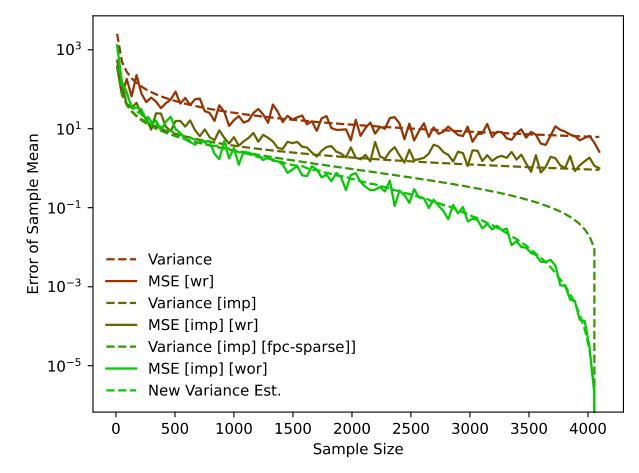
Weigh columns by magnitude of x

Importance Sampling + Finite-Population Correction

Adjust variance estimate w/ finitepopulation correction

Gumbel Sampling

Perturb logits w/ Gumbel noise and sample in descending order^{1,2}



¹ "A generalization of sampling without replacement from a finite universe." *Journal of the American Statistical Association* ² "Gumbel-max trick and weighted reservoir sampling." Graduate Descent

11/13/2024

Future Work

"In most modern-day transformer architectures, **memory** *I/O serves as the primary bottleneck*. AdaptiveSoftmax already presents an opportunity to significantly scale down the number of entries of the matrix that must be loaded at inference time, and, in the future - if memory remains the bottleneck - *improve model bandwidth* by a similar factor."

Thank You

Come chat with us!

Poster Session 2 on Wednesday, Dec. 11th from 4:30pm-7:30pm

