

Synergistic Dual Spatial-aware Generation of Image-to-text and Text-to-image

Yu Zhao, Hao Fei, Xiangtai Li, Libo Qin, Jiayi Ji, Hongyuan Zhu, Meishan Zhang, Min Zhang, Jianguo Wei

Background

Visual Spatial Understanding

Definition:

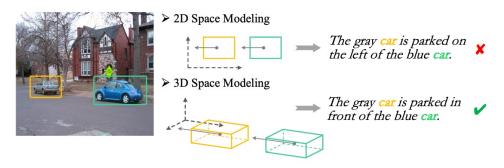
Extracting Spatial Information, including position, relation, pose, layout, etc., reasoning, and applying to special tasks (SLAM, navigation, etc.)

Forms of Tasks:

Relation Extraction
Question Answering
Image-to-Text Generation, Captioning
Image Synthesis
3D Reconstruction

. . .

We study the representative spatial image-to-text (SI2T) and spatial text-to-image (ST2I)


Motivation

SI2T

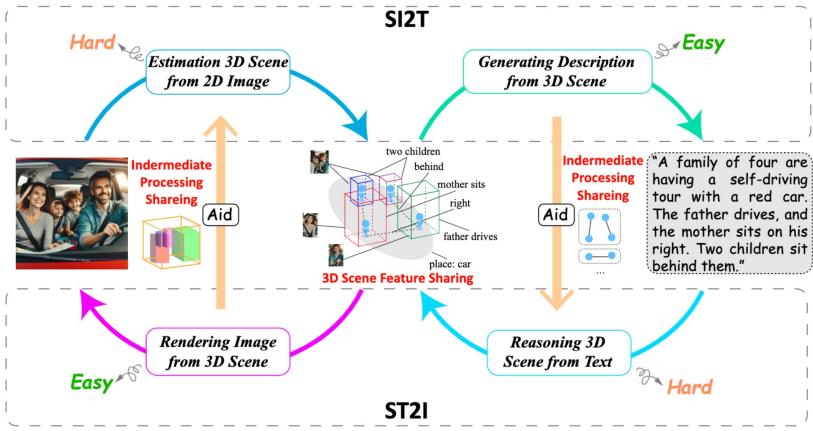
Overlap

Perspective Illusion

ST2I

You

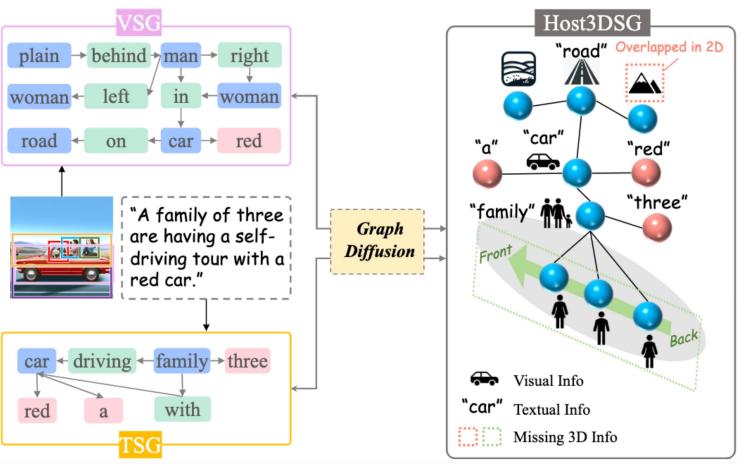
画一张图有一张桌子、一把椅子,一本书,椅子放在在桌子的左侧,书放在椅子上,椅 背对着桌子



Motivation

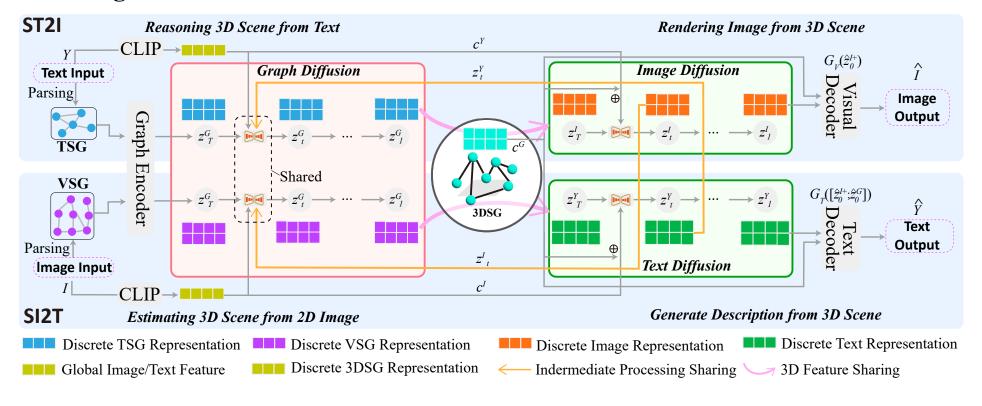
Consider the Two Tasks Together

- Dual for each other
- Share the 3D scene feature:
- The dual processes help each other



Model the Shared 3D Feature

- Share a Holistic 3D Scene Graph
- Generating via a Graph Diffusion
- Initialized from Visual Scene Graph or Textual Scene Graph



Dual Learning Framework

- Three Diffusion Module
- Dual Training

Training Objectives

Diffusion

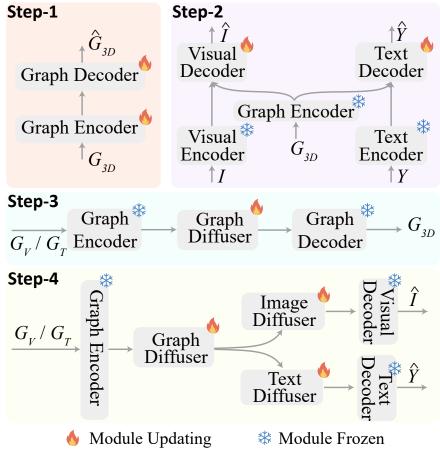
$$q(oldsymbol{x}_{1:T}|oldsymbol{x}_0) = \prod_{t=1}^T q(oldsymbol{x}_t|oldsymbol{x}_{t-1}) \quad p_{ heta}(oldsymbol{x}_{0:T}) = p(oldsymbol{x}_T) \prod_{t=1}^T p_{ heta}(oldsymbol{x}_{t-1}|oldsymbol{x}_t) \quad L = \mathbb{E}_qigg[-\log p(oldsymbol{x}_T) - \sum_{t \geq 1} \log rac{p_{ heta}(oldsymbol{x}_{t-1}|oldsymbol{x}_t)}{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})}igg]$$

• Spatial Feature Alignment

Train the Image Decoder and Text Decoder

$$\mathcal{L}_{v-rec} = ||I - G_V(z_0^{I+})||^2 \qquad \mathcal{L}_{t-dec} = -\sum_{i=1}^{|y|} \log p(y_i|y_{< i}, [z_0^Y; z_0^G])$$

Host3DSG Reconstruction Training


$$\mathcal{L}_{DGAE} = -\mathbb{E}_{\hat{\mathcal{Z}}^G} \ln(p(G_{host}|\hat{\mathcal{Z}}^G)),$$

Training Strategy

- Step-1: DGAE pre-training
- Step-2: Spatial Alignment
- Step-3: 2DSG→3DSG Diffusion Training
- Step-4: Overall Training

Results

Main Results

	VSDv1					VSDv2				
	ST2I			SI2T		ST2I			SI2T	
	FID↓	IS↑	CLIP↑	BLEU4↑	SPICE ↑	FID↓	IS↑	CLIP↑	BLEU4↑	SPICE ↑
• T2I Baselines										
DALLE [62]	32.55	17.01	62.16	-	-	28.52	21.18	64.58	-	-
Cogview [13]	32.30	17.07	61.85	-	-	28.17	21.74	64.76	-	-
LAFITE [98]	30.73	24.39		-	-	25.73	25.47		-	-
VQ-Diffusion [28]	18.34	20.58	63.42	-	-	15.66	24.75	66.30	-	-
Friodo [15]	<u>12.86</u>	<u>25.92</u>	<u>64.65</u>	-	-	<u>11.41</u>	<u>26.02</u>	<u>67.01</u>	-	-
• I2T Baselines										
3DVSD [97]	-	-	-	54.85	68.76	-	-	-	26.40	46.97
MNIC [25]	-	-	-	34.21	66.87	-	-	-	20.01	43.88
FNIC [23]	-	-	-	37.03	66.50	-	-	-	22.62	43.52
DiffCap [29]	-	-	-	34.75	66.39	-	-	-	20.27	43.30
DDCap [99]	-	-	-	37.93	67.10	-	-	-	23.14	44.07
Singleton	18.05	20.42	63.51	48.77	66.59	14.70	24.62	66.41	23.51	43.70
Singleton + 3D	12.56	26.92	65.62	50.05	67.20	10.43	25.62	67.29	25.37	45.13
Vanilla Dual Learning	11.80	27.85	67.18	51.59	67.79	11.67	27.80	68.46	26.10	46.72
SD ³ (Ours)	11.04	29.20	68.31	56.23	68.02	10.09	29.76	71.10	27.63	48.03

Results

Cases

GT Image

GT Text A man is on the couch next a dog laying down.

GT Image

GT Text Some weeds in the middle are in front of the railway tracks.

VQ-Diffusion

DDCap A man sitting on a chair with a dog on his lap.

VQ-Diffusion

DDCap A train traveling down tracks next to a forest.

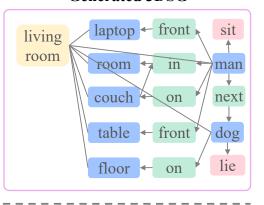
Frido

3DVSD A man is sitting on the sofa.

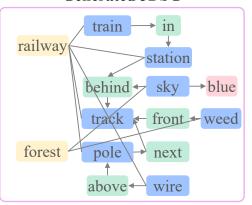
Frido

3DVSD Some weeds lie on the right of the railway tracks.

SD^3



 SD^3 A man is sitting on the couch with a dog aside.



 SD^3 Some weeds grow in front of the railway tracks.

Generated 3DSG

Generated 3DSG

