

Knowledge Circuits in Pretrained Transformers

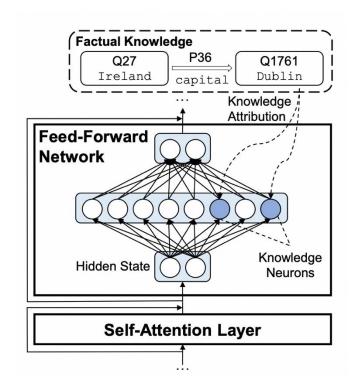
Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, Huajun Chen

Speaker: Yunzhi Yao @ Zhejiang University

Email: yyztodd@zju.edu.cn

Rethinking the knowledge in Transformers

☐ Feed Forward Networks(FFN) stores enormous Knowledge



Paradigm	$ $ Pre-edit $ $ Post-edit $ $ Δ					
det_n_agr2	100%	94.8%	-5.2%			
dnairr2	99.5%	96.9%	-2.6%			
dnawadj2	97.1%	94.4%	-2.7%			
dnawadjirr2	97.4%	95.4%	-2.0%			

(b) These modifications of determinernoun KNs are usually not enough to overturn the categorical prediction.

Data	Model	Reliability
ZsRE	T5-XL GPT-J	22.51 11.34
CounterFact	T5-XL GPT-J	47.86 1.66

(c) KN edit has low reliability for facts (Yao et al., 2023).

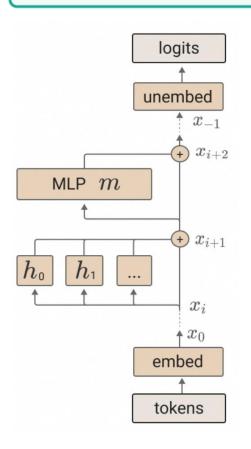
Knowledge Neuron?

Editing the KNs is not enough to overturn the predictions (Niu et al., 2024)

Circuits in Transformer Structure

Definition: Circuit

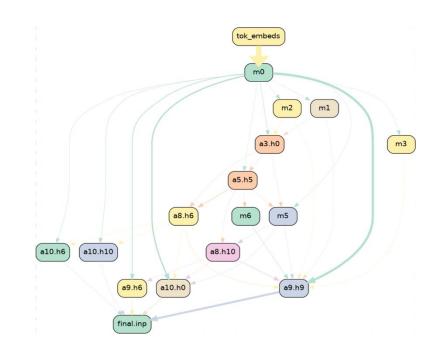
Circuits are sub-graphs of the network, consisting of features and the weights connecting them.



$$R_{l} = R_{l-1} + \sum_{j} A_{l,j} + M_{l}, R_{0} = I$$

$$ext{Input}_l^A = I + \sum_{l' < l} \left(M_{l'} + \sum_{j'} A_{l',j'}
ight)$$

$$\operatorname{Input}_l^M = I + \sum_{l' < l} M_{i'} + \sum_{l' \leq i} \sum_{j'} A_{l',j'}$$



Knowledge Circuit Construction

1. View LM as a Directed acyclic graph (DAG)

 ${\cal G}$

2. Overwrite the activation value of an edge with a corrupted activation

zero ablation in our experiments

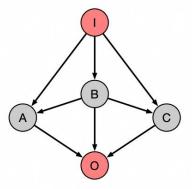
3. Run a forward pass through the model, and compare the output values of the new model with the original model.

$$S(e_i) < \tau$$

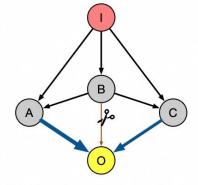
$$C_{temp} \leftarrow \mathcal{G}/e_i$$

4. Finally get the subgraph that contributes to the knowledge expression.

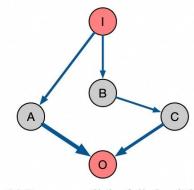
$$C_k = \langle N_k, E_k \rangle$$



(a) Choose computational graph, task, and threshold τ .



(b) At each head, prune unimportant connections.



(c) Recurse until the full circuit is recovered.

$$k = (s, r, o)$$

$$S(e_i) = \log(\mathcal{G}/e_i(o|(s,r))) - \log(\mathcal{G}(o|(s,r)))$$

Evaluation of the Identified Circuit

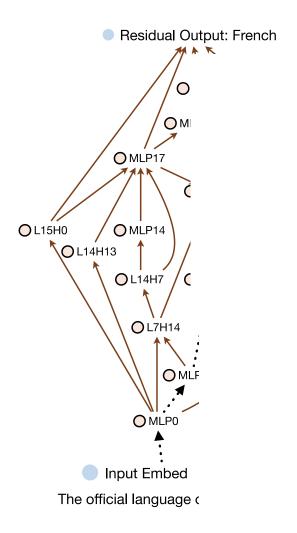
☐ Experiment Results in GPT2-Medium

Table 1: Hit@10 of the Original and Circuit Standalone performance of knowledge circuit in GPT2-Medium. The result for D_{val} being 1.0 indicates that we select the knowledge for which the model provides the correct answer to build the circuit.

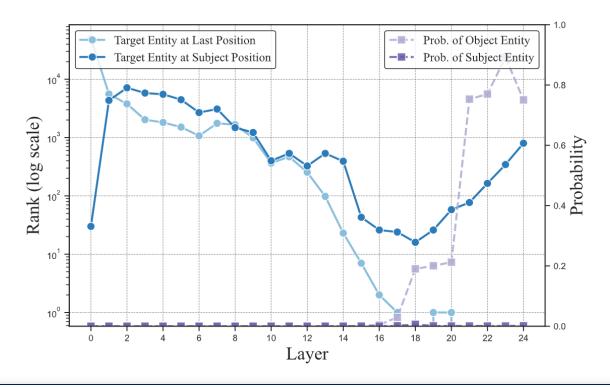
Туре	Knowledge	#Edge	D_{val}		D_{test}	
			$Original(\mathcal{G})$	Circuit(C)	$Original(\mathcal{G})$	$Circuit(\mathcal{C})$
Linguistic	Adj Antonym	573	0.80	1.00 ↑	0.00	0.40 ↑
	world first letter	432	1.00	0.88	0.36	0.16
	world last letter	230	1.00	0.72	0.76	0.76
Commonsense	object superclass	102	1.00	0.68	0.64	0.52
	fruit inside color	433	1.00	0.20	0.93	0.13
	work location	422	1.00	0.70	0.10	0.10
Factual	Capital City	451	1.00	1.00	0.00	0.00
	Landmark country	278	1.00	0.60	0.16	0.36 ↑
	Country Language	329	1.00	1.00	0.16	0.75 ↑
	Person Native Language	92	1.00	0.76	0.50	0.76 ↑
Bias	name religion	423	1.00	0.50	0.42	0.42
	occupation age	413	1.00	1.00	1.00	1.00
	occupation gender	226	1.00	0.66	1.00	0.66
	name birthplace	276	1.00	0.57	0.07	0.57 ↑
Avg			0.98	0.73	0.44	0.47 ↑

An identified circuit in GPT2-Medium

□View the Information Flow in the Circuit



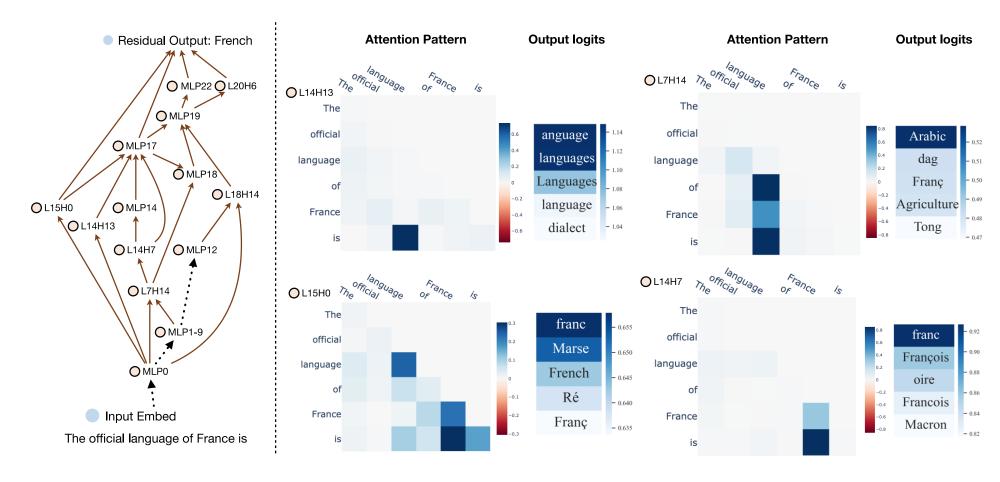
Logit Lens: $\mathbf{W}_U \operatorname{LN}(n_i)$



At layer 17, French becomes the token of top1 in the vocabulary space, and then its probability gradually increases.

Some special attention head in the circuit

- ① Mover Head: move the information at the subject position to the last token
- ② Relation Head: attend the relation token in the context

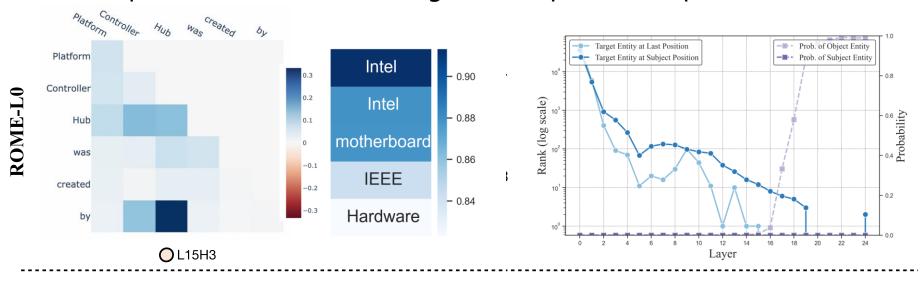


Internal Mechanisms for Knowledge Editing

□What happened when we edit the model?

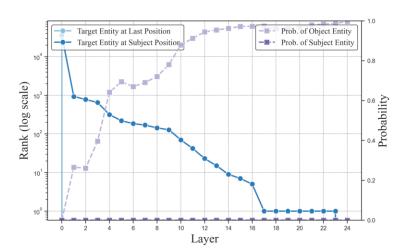
Internal Mechanisms for Knowledge Editing

Finding 1: ROME add the information at subject position so the Mover Head extract the true answer
 FT is prone to add the knowledge at the specific edit position





Intel - 13.5 awei McInt Samsung Lux **-** 1.02 Insight 1.00 Huawei 12.0 Bei VERTISEMENT - 11.5 Intel Witness - 0.96 Lenovo Computing OL15H3 MLP 0



FT-L

Internal Mechanisms for Knowledge Editing

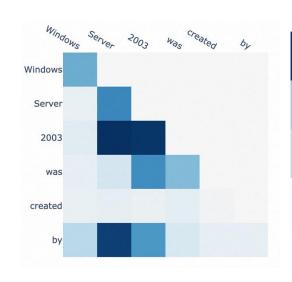
- **Finding 2:** The edited information will cause the mover head of other knowledge to select the wrong knowledge.

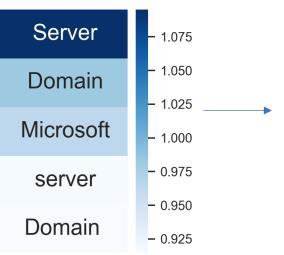
Edit Case:

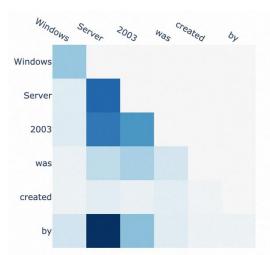
Platform Controller Hub is created by Intel.

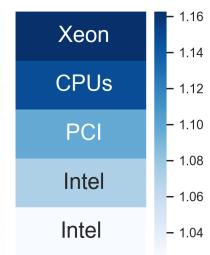
Other Case:

Windows Server 2003 is created by Intel.









L18H14

ROME

Conclusion and Discussion

□ Conclusion

- 1. We find some circuits in the pretrained model that are responsible for the storage and expression of specific knowledge.
- 2. Through the circuits, we make a preliminary exploration on the internal mechanism of knowledge editing method and some behavior like hallucination and icl.

□ Future Discussion

- 1. There are still some components in the discovered circuits need to interpret.
- 2. How does the LM utilize the circuit for reasoning?

 ${\sf GitHub}$

Preprint

