Optimal Top Two Method for Best Arm Identification and Fluid Analysis

Agniv Bandyopadhyay, TIFR Mumbai

NeurIPS 2024

Joint work with: Sandeep Juneja (Ashoka University) and Shubhada Agrawal (Carnegie Mellon University)

BEST-ARM IDENTIFICATION PROBLEM

-unknown distributions (or *arms*) are given. **Objective** is to **identify the arm with highest** *K* **mean**, a.k.a., the best arm, **consuming the minimum no. of samples**, with **probability of error atmost .** *δ*

Distributional Assumption: We assume that instances are from a **single parameter exponential family.** Such families can be parameterised using their mean.

 δ -correctness: An algorithm is said to be δ -correct, if for every instance and choice of confidence parameter δ , the algorithm stops and identifies the best arm correctly with probability at least $1-\delta$.

Problem Statement: To design a δ -correct algorithm which consumes the minimum no. of **samples for every problem instance.**

LOWER BOUND

 δ , the sample complexity of any δ -correct algorithm is lower bounded by:

lim sup *δ*→0 $\frac{\text{L}\nu_{\delta}I}{\log(1/\delta)} \leq T^{\star}(\mu)$

for every instance μ .

Theorem: For every instance $\mu = (\mu_1, \mu_2, ..., \mu_K)$ having **the first arm as the best arm** and every choice of confidence

 $u_1, x_1, a) + N_a d(\mu_a, x_1, a) \geq \log(1/\delta),$

where
$$
x_{1,a} = \frac{N_1\mu_1 + N_a\mu_a}{N_1 + N_a}
$$
. Solution to the above problem is of the form $T^*(\mu) \cdot \log(1/\delta)$, where $T^*(\mu)$ is a

constant depending only on the instance μ .

Asymptotic Optimality: An algorithm is asymptotically optimal if its sample complexity τ_{δ} satisfies: $[\tau_{\delta}]$

$$
\begin{aligned}\n\mathcal{O}: \quad & \min \quad \sum_{a \in [K]} N_a \\
\text{s.t.} \quad & \forall a \neq 1, \, \mathcal{F}_a = N_1 d(\mu)\n\end{aligned}
$$

EXISTING *β*-ASYMP. OPTIMAL ALGORITHMS

2. **minimum empirical index arm** (index of arm a is $\mathscr{I}_a = N_1 d(\hat{\mu}_1, \hat{x}_{1,a}) + N_a d(\hat{\mu}_a, \hat{x}_{1,a})$) with ̂

 $\mathcal{I}_a = \log(1/\delta) +$

- 1. **empirically best arm** is pulled **with probability** *β*
-
- **probability** 1β . ([Jourdan et al., 22])
- 3. Stop when the minimum empirical index $\min_{a} \mathscr{I}_{a} = \log(1/\delta) +$ smaller order terms. *a*≠ *i*

[Russo '16], [Jourdan et al. '22] showed β -Top Two algorithms are asymptotically β -optimal (optimal upto giving β -fraction of samples to the best arm). $\beta = 0.5$ gives sample complexity of atmost twice of the lower bound (see [Russo '16]).

FIRST-ORDER CONDITIONS

Theorem: The optimal allocations N^{\star} solving $\mathscr O$ is uniquely characterised by the conditions:

 $g = \sum$ *a*≠1

and index \mathscr{I}_a of every alternative arm $a\neq 1$ are equal to $\log(1/\delta)$. Our algorithm tracks these first order conditions.

1. We call $g(\cdot)$ the anchor function

2. The optimal allocation is uniquely identified by the conditions:

- a. The anchor function $g(\,\cdot\,)$ must be zero
-

 $d(\mu_1, x_{1,a})$ $d(\mu_a, x_{1,a})$ $-1 = 0$

b. Index \mathscr{I}_a of all the sub-optimal arms are equal to each other and equal to $\log(1/\delta)$.

ANCHORED TOP-TWO ALGORITHM (AT2)

At every iteration N do:

- **•Forced exploration:** Sample an arm if it has less than N^{α} samples ($\alpha \in (0,1)$ chosen in the beginning)
- Choice of leader: If $g \geq 0$, sample the empirically best arm, otherwise
- •Choice of challenger: If $g < 0$, sample the arm with minimum empirical index ${\mathscr{I}}_a$
- **• Stopping Condition (GLLR):** Terminate if the minimum index ($\min_{a} \mathscr{I}_a$) exceeds $\log(1/\delta)$ +smaller order *a*≠ *ibest* ̂

terms.

Theorem: AT2 algorithm is asymptotically optimal.

APPROXIMATING ALGO. THROUGH ITS FLUID ANALYSIS

We study the algorithm under an idealised setting where: 1. Mean of all the arms, i.e., $\mu_1, \mu_2, ..., \mu_K$ are known 2.Samples are treated as continuous object 3. Once we reach $g = 0$, we stay there **4.Once index of two arms become equal, they stay equal and increase with the total sample allocation .**

FLUID EQUATIONS

Let $N_a(N)$ be the allocation made to arm a from the total allocation N , B be the set of minimum index arms, and $I_{\cal B}(N)$ be the minimum index.

In the fluid framework, **the allocations increase via the following system of ODEs until the minimum index hits the higher index**:

 $h(B), h(N), d_{B}$ are functions of the instance and the allocations (N_{a}). 1. **Overall path is attained by concatenating the above system of ODEs.** 2. After a finite amount of time, all the indexes becomes equal and g becomes zero. 3. **The AT2 algorithm closely mimics the fluid dynamics** after a random time of finite expectation and converges to the optimal allocation.

, $\forall b \in B, N'_b =$ $N_b h(B) + d_{b,b}^{-1} h(N)$ $(N_1 + \sum_{a \in B} N_a)h(B) + d_B^{-1}h(N)$,

$$
N'_{1} = \frac{N_{1}h(B)}{(N_{1} + \sum_{a \in B} N_{a})h(B) + d_{B}^{-1}h(N)},
$$

and
$$
I'_{B} = \frac{I_{B}(N)h(B) + h(N)}{(N_{1} + \sum_{a \in B} N_{a})h(B) + d_{B}^{-1}h(N)}
$$

,

COMPARISON WITH EXISTING ALGORITHMS

Sample complexity comparison between ATT, TCB(I) (Tajer and Mukherjee), and β -Top-Two policies with different values of β .

AT2 improves upon the existing algorithms.

4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance

