Optimal Top Two Method for Best Arm Identification and Fluid Analysis

NeurIPS 2024

Agniv Bandyopadhyay, TIFR Mumbai

Joint work with: Sandeep Juneja (Ashoka University) and Shubhada Agrawal (Carnegie Mellon University)

BEST-ARM IDENTIFICATION PROBLEM

K-unknown distributions (or *arms*) are given. **Objective** is to **identify the arm with highest mean**, a.k.a., the best arm, **consuming the minimum no. of samples**, with **probability of error atmost** δ .

Distributional Assumption: We assume that instances are from a **single parameter exponential family.** Such families can be parameterised using their mean.

 δ -correctness: An algorithm is said to be δ -correct, if for every instance and choice of confidence parameter δ , the algorithm stops and identifies the best arm correctly with probability at least $1 - \delta$.

Problem Statement: To design a δ -correct algorithm which consumes the minimum no. of samples for every problem instance.

LOWER BOUND

 δ , the sample complexity of any δ -correct algorithm is lower bounded by:

$$\mathcal{O}: \min \sum_{a \in [K]} N_a$$

s.t. $\forall a \neq 1, \mathcal{F}_a = N_1 d(\mu)$

where
$$x_{1,a} = \frac{N_1 \mu_1 + N_a \mu_a}{N_1 + N_a}$$
. Solution to the above prol

constant depending only on the instance μ .

Asymptotic Optimality: An algorithm is asymptotically optimal if its sample complexity τ_{δ} satisfies: $\limsup_{\delta \to 0} \frac{\mathbb{E}[\tau_{\delta}]}{\log(1/\delta)} \le T^{\star}(\mu)$

for every instance μ .

Theorem: For every instance $\mu = (\mu_1, \mu_2, \dots, \mu_K)$ having the first arm as the best arm and every choice of confidence

 $u_1, x_{1,a} + N_a d(\mu_a, x_{1,a}) \ge \log(1/\delta),$

blem is of the form $T^{\star}(\mu) \cdot \log(1/\delta)$, where $T^{\star}(\mu)$ is a

- 1. empirically best arm is pulled with probability β
- probability 1β . ([Jourdan et al., 22])
- 3. Stop when the minimum empirical index $\min_{a \neq \hat{i}} \mathscr{I}_a = \log(1/\delta) + \text{smaller order terms}$.

[Russo '16], [Jourdan et al. '22] showed β -Top Two algorithms are asymptotically β -optimal (optimal upto giving β -fraction of samples to the best arm). $\beta = 0.5$ gives sample complexity of atmost twice of the lower bound (see [Russo '16]).

EXISTING β -ASYMP. OPTIMAL ALGORITHMS

2. minimum empirical index arm (index of arm a is $\mathcal{F}_a = N_1 d(\hat{\mu}_1, \hat{x}_{1,a}) + N_a d(\hat{\mu}_a, \hat{x}_{1,a})$) with

FIRST-ORDER CONDITIONS

Theorem: The optimal allocations N^* solving \mathcal{O} is uniquely characterised by the conditions: $g = \sum_{\substack{a \neq 1}} \frac{d(\mu_1, x_{1,a})}{d(\mu_a, x_{1,a})} - 1 = 0$ and index \mathcal{I}_a of every alternative arm $a \neq 1$ are equal to $\log(1/\delta)$. Our algorithm tracks these first order conditions.

1. We call $g(\cdot)$ the **anchor function**

2. The optimal allocation is uniquely identified by the conditions:

a. The anchor function $g(\cdot)$ must be zero

b. Index \mathcal{F}_a of all the sub-optimal arms are equal to each other and equal to $\log(1/\delta)$.

ANCHORED TOP-TWO ALGORITHM (AT2)

At every iteration N do:

- •Forced exploration: Sample an arm if it has less than N^{α} samples ($\alpha \in (0,1)$ chosen in the beginning)
- •Choice of leader: If $g \ge 0$, sample the empirically best arm, otherwise
- •Choice of challenger: If g < 0, sample the arm with minimum empirical index \mathcal{F}_a
- Stopping Condition (GLLR): Terminate if the minimum index $(\min_{a \neq \hat{i}_{best}} \mathscr{I}_a)$ exceeds $\log(1/\delta)$ +smaller order

terms.

Theorem: AT2 algorithm is asymptotically optimal.

APPROXIMATING ALGO. THROUGH ITS FLUID ANALYSIS

We study the algorithm under an idealised setting where: 1.Mean of all the arms, i.e., $\mu_1, \mu_2, \ldots, \mu_K$ are known 2.Samples are treated as continuous object **3.Once we reach** g = 0, we stay there 4.Once index of two arms become equal, they stay equal and increase with the total sample allocation.

FLUID EQUATIONS

Let $N_a(N)$ be the allocation made to arm a from the total allocation N, B be the set of minimum index arms, and $I_B(N)$ be the minimum index.

In the fluid framework, the allocations increase via the following system of ODEs until the minimum index hits the higher index:

$$N'_{1} = \frac{N_{1}h(B)}{(N_{1} + \sum_{a \in B} N_{a})h(B) + d_{B}^{-1}h(N)},$$

and
$$I'_{B} = \frac{I_{B}(N)h(B) + h(N)}{(N_{1} + \sum_{a \in B} N_{a})h(B) + d_{B}^{-1}h(N)}$$

h(*B*), *h*(*N*), *d_B* are functions of the instance and the allocations (*N_a*).
1. Overall path is attained by concatenating the above system of ODEs.
2. After a finite amount of time, all the indexes becomes equal and *g* becomes zero.
3. The AT2 algorithm closely mimics the fluid dynamics after a random time of finite expectation and converges to the optimal allocation.

 $\forall b \in B, \quad N'_b = \frac{N_b h(B) + d_{b,b}^{-1} h(N)}{(N_1 + \sum_{a \in B} N_a) h(B) + d_B^{-1} h(N)},$

COMPARISON WITH EXISTING ALGORITHMS

4 armed Gaussian instance with means [10, 8, 7, 6.5] and unit variance

Sample complexity comparison between ATT, TCB(I) (Tajer and Mukherjee), and β -Top-Two policies with different values of β .

AT2 improves upon the existing algorithms.

