Warm-starting Push-Relabel

Sami Davies (UC Berkeley), Sergei Vassilvitskii (Google Research—New York), Yuyan Wang (Google Research—New York)

Network flow

Transportation
Intrusion detection
Network connectivity

Flows satisfy capacity and conservation constraints

Push-Relabel

Push-Relabel (high level)

- Keeps track of a pre-flow on edges and heights for the nodes
- Algorithm is iterative—while there is a u node with excess flow
 - - "downhill"/ closer to t) or
 - 2. Increase height of *u*

Height of a node *u* estimates length of shortest path between *u* and *t* in the residual graph

1. Push flow from *u* with height *h* to a node with height *h*-1 (send flow

Push-Relabel

Push-Relabel (high level)

- Keeps track of a pre-flow on edges and heights for the nodes
- Algorithm is iterative—while there is a u node with excess flow
 - - "downhill"/ closer to t) or
 - 2. Increase height of *u*

 $O(|V|^2 |E|)$ running time [Goldberg, Tarjan '86] (or faster $O(|V|^2 \sqrt{|E|})$ with heuristics) Considered the benchmark for max flow algorithms in practice

> Why is Push-Relabel so much better in practice than its theoretical guarantees?

1. Push flow from *u* with height *h* to a node with height *h*-1 (send flow

Learning-augmented algorithms

Goal: find book by author Lewis Carroll, *n* books total

Vanilla binary search

Start in the middle

• Run-time $O(\log n)$

Learning-augmented binary search

Run-time O(log err)

Algorithm has access to a learned **prediction** Prediction can guide the algorithm's decisions

Learning-augmented algorithms

Goal: find book by author Lewis Carroll, *n* books total

Vanilla binary search

>200 papers in past 5 years!

BIC Di L Mi OI Ot Z

https://algorithms-with-predictions.github.io/

- Learned indexes [Kraska et al PODS18]
- Caching [Lykouris and Vassilvitskii JACM21]
- Social welfare maximization [Banerjee et al SODA22]

Learning-augmented binary search

Learning-Augmented k-means Clustering Ergun, Feng, Silwal, Woodruff, Zhou (arXiv '22

Learning-Augmented Mechanism Design: Leveraging Predictions for

Learning-augmented Push-Relabel

Main results:

speed up using predicted flows, theory is predictive of practice!

First proof that the gap-relabeling heuristic (popular in practice) can improve the performance of PR!

- Can improve running-time of Push-Relabel with good predicted flows With predicted flow \hat{f} , find optimal f^* in time $O(|V|^2 \cdot min\{||\hat{f}-f^*||_1, |E|\})$.
- ▶ If optimal f^* has value $\leq \eta$, can find an optimal flow in time $O(\eta \cdot |V|^2)$.
- Apply our algorithm to image segmantation instances. Empirically obtain

