Minimum Entropy Coupling with Bottleneck

M.Reza Ebrahimi

University of Toronto mr.ebrahimi@mail.utoronto.ca

Jun Chen McMaster University chenjun@mcmaster.ca

Ashish Khisti

University of Toronto akhisti@ece.utoronto.ca

TO

Introduction

Let us consider the following general lossy compression setup:

$$X \xrightarrow{p_{T|X}} T \xrightarrow{q_{Y|T}} Y$$

Instead of expected sample-wise distortion $\mathbb{E}[d(X,Y)]$, we use the logarithmic-loss H(X|Y).

Min. Ent. Coupling w/ Bottleneck	
$\max_{p_{T X}, q_Y _T} I(X;Y)$	Min. Ent. Coupling
s.t. $X \leftrightarrow T \leftrightarrow Y$,	$\max_{p_{Y X}} I(X;Y)$
$H(T) \leq R,$	s.t. $P(Y) = p_Y$,
$P(Y) = p_Y,$	$P(X) = p_X$
$P(X) = p_X$	

Decomposition

Entropy-Bounded Info. Max. (EBIM)

Entropy-Bounded Info. Max. (EBIM)

$$\mathcal{I}_{\text{EBIM}}(p_X, R) = \max_{\substack{p_{XT} \\ p_{XT}}} I(X;T)$$

s.t. $H(T) \leq R,$
 $P(X) = p_X$

 $\mathcal{I}_{\text{EBIM}}(p_X, R) \le R$

$$\mathcal{I}_{\text{EBIM}}(p_X, R) = R$$

$$\iff \exists g : \mathcal{X} \to \mathcal{T} \text{ s.t. } H(g(X)) = R$$

Entropy-Bounded Info. Max. (EBIM)

Theorem 3

Around a deterministic mapping T = g(x), defines transformations resulting in optimal solutions for

1.
$$\mathcal{I}_{EBIM}(p_X, R_g + \epsilon)$$

2. $\mathcal{I}_{EBIM}(p_X, R_g - \epsilon)$

Entropy-Bounded Info. Max. (EBIM)

Theorem 3

Around a deterministic mapping T = g(x), defines transformations resulting in optimal solutions for

1.
$$\mathcal{I}_{EBIM}(p_X, R_g + \epsilon)$$

2. $\mathcal{I}_{EBIM}(p_X, R_g - \epsilon)$

Deterministic EBIM Solver

- The number of deterministic mappings in EBIM formulation is $O(n^n)$, where $n = |\mathcal{X}|$.
- Iterating over all deterministic mappings is not feasible.
- One should look for carefully constructed search algorithms to find such mappings with resulting I(X;T) as close as possible to R.

Algorithm 5 Deterministic EBIW Solver	
Input: p_X, R	
Output: p_{XT}	
1: $p_{XT} \leftarrow \operatorname{diag}(p_X)$	
2: for $i \leftarrow 1$ to $ p_X - 1$ do	
3: $p_s^{(i)} \leftarrow$ Merge the two columns	s with the smallest sum in p_{XT} .
4: $I_s^{(i)} \leftarrow$ Mutual Information im	posed by $p_s^{(i)}$.
5: $p_l^{(i)} \leftarrow \text{Merge the two columns}$	s with the largest sum in p_{XT} .
6: $I_l^{(i)} \leftarrow$ Mutual Information im	posed by $p_l^{(i)}$.
7: if $I_s^{(i)} \leq R$ then	
8: return $p_s^{(i)}$	
9: else if $I_l^{(i)} \leq R < I_s^{(i)}$ then	
10: return $p_l^{(i)}$	
11: else	
12: $p_{XT} \leftarrow p_l^{(i)}$	

Algorithms & Deterministic EDIM Colore

Theorem 2

If the output of Algorithm 5 yields mutual information \widehat{I} , then:

```
\mathcal{I}_{EBIM}(p_X, R) - \widehat{I} \le h(p_2),
```

where $h(\cdot)$ is the binary entropy function, and p_2 denotes the second largest element of p_X .

Core Contributions

Minimum Entropy Coupling with Bottleneck

- We presents a lossy compression framework under logarithmic loss, that extends Min. Entropy Coupling (MEC) with a bottleneck.
- We then propose Entropy-Bounded Information Maximization (EBIM) formulation for the encoder, extensively characterize the structure of its optimal solution, and provide efficient approximate solutions with guaranteed performance.
- We also illustrate the practical application of MEC-B through experiments in Markov Coding Games under rate limits.