

MoMu-Diffusion: On Learning Long-Term Motion-Music Synchronization and Correspondence

Fuming You, Minghui Fang, Li Tang, Rongjie Huang, Zhou Zhao Zhejiang University

Background

Table 1: Comparison with the state-of-the-art audio-visual generation works, including but not limited
to motion-music generation.

Method	Pub.	Joint Generation	Pretrain	Long-Term Synthesis	Latent Space
Diff-Foley	NeurIPS'23	×	1	×	1
MM-Diffusion	CVPR'23	✓	×	×	×
LORIS	ICML'23	×	×	✓	×
D2M	NeurIPS'19	×	✓	×	\checkmark
CDCD	ICLR'23	×	×	\checkmark	1
MoMu-Diffusion		1	1	✓	✓

Motion-to-Music and Music-to-Motion generations are separately researched.

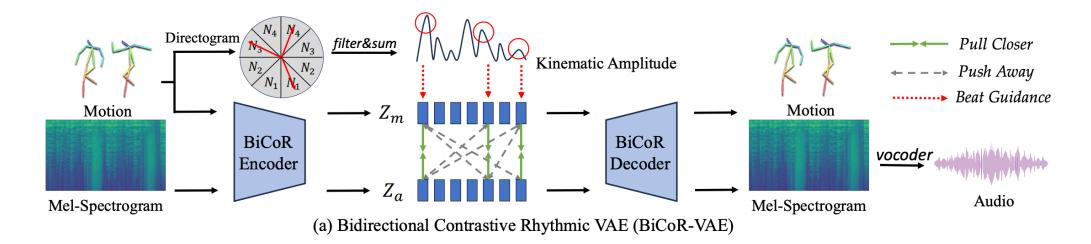
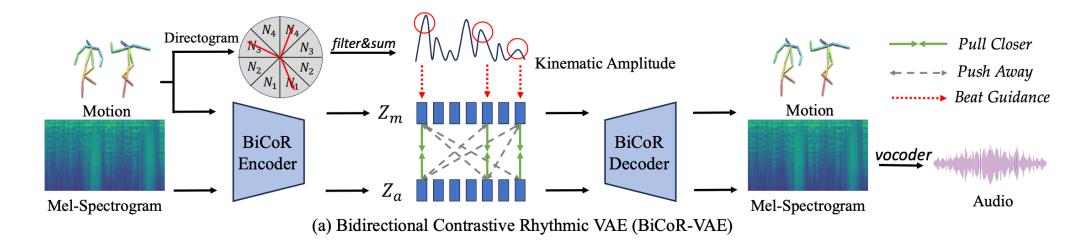

Challenges

Table 1: Comparison with the state-of-the-art audio-visual generation works, including but not limited to motion-music generation.

Method	Pub.	Joint Generation	Pretrain	Long-Term Synthesis	Latent Space
Diff-Foley	NeurIPS'23	×	1	×	1
MM-Diffusion	CVPR'23	√	×	×	X
LORIS	ICML'23	×	×	<i>s</i>	×
D2M	NeurIPS'19	X	\checkmark	×	\checkmark
CDCD	ICLR'23	×	×	✓	1
MoMu-Diffusion		1	1	1	1

- 1. Maintain long-term coherence in typically lengthy motion-music sequences.
- 2. Ensure temporal synchronization and rhythmic alignment between motion and music sequences.

BiCoR-VAE

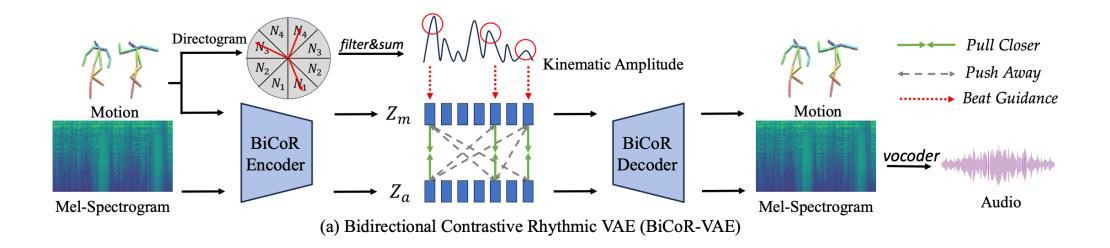

2D Motion Directogram:

$$D(r,\theta) = \sum_{j=1}^{J} ||F(r,j)||_2 \mathbb{1}_{\theta} (\angle F(r,j)), \quad \text{where } \mathbb{1}_{\theta}(\phi) := \begin{cases} 1, & |\theta - \phi| \le 2\pi/K, \\ 0, & \text{otherwise.} \end{cases}$$
(1)

Kinematic Amplitude:

$$Q(r) = \sum_{k=1}^{K} \max(0, |D(r,k)| - |D(r-1,k)|),$$
(2)

BiCoR-VAE

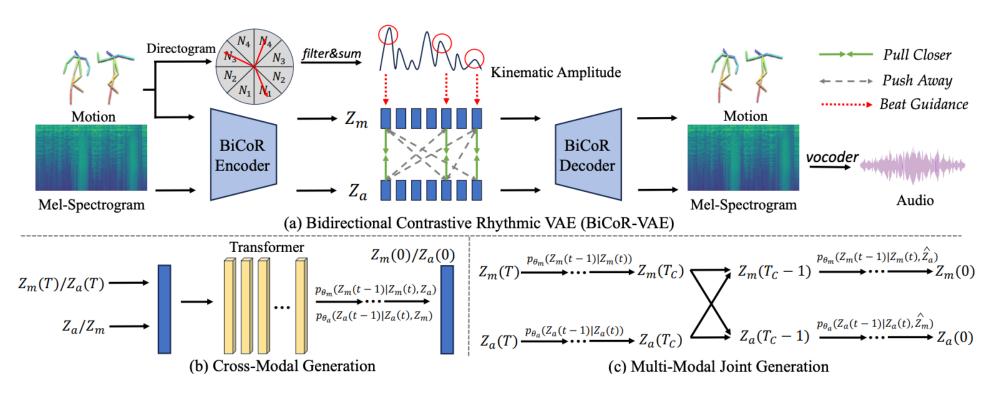

Sampling contrastive pairs:

$$c_a^{r_s:r_e} = P_{\max}(z_a^{r_s}: z_a^{r_e}), \ c_m^{r_s:r_e} = P_{\max}(z_m^{r_s}: z_m^{r_e}), \ Q(r_s:r_e) = \max(Q(r_s):Q(r_e)),$$
(3)

Contrastive Loss for rhythmic alignment:

$$\mathcal{L}_{\text{contrast}} = -\frac{1}{2} \log \frac{\exp(sim(c_a^i, c_m^j)/\tau)}{\sum_{c=1}^{N_C} \exp(sim(c_a^i, c_m^c)/\tau)} - \frac{1}{2} \log \frac{\exp(sim(c_a^i, c_m^j)/\tau)}{\sum_{c=1}^{N_C} \exp(sim(c_a^c, c_m^j)/\tau)}.$$
 (4)

Training Strategy for BiCoR-VAE



1. The VAE presents a trade-off between representational fidelity and generative alignment, posing optimization challenges.

2. Initially, we train the music VAE with a reconstruction loss, a KL loss, and a GAN loss to prevent over-smoothing of the mel-spectrogram.

3. Then, we fix the trained music VAE and train the motion VAE with a reconstruction loss, a KL loss, and the proposed contrastive rhythmic loss.

Cross-Modal Generation

Training loss:

$$\mathcal{L}_{m2a} = ||\epsilon_{\theta_a}(z_a(t), t, z_m) - \epsilon||_2^2, \qquad \mathcal{L}_{a2m} = ||\epsilon_{\theta_m}(z_m(t), t, z_a) - \epsilon||_2^2, \tag{6}$$

Classifier-free guidance:

$$\hat{\epsilon}_{\theta_a}(z_a(t), t, z_m) = \epsilon_{\theta_a}(z_a(t), t, \emptyset) + s \cdot (\epsilon_{\theta_a}(z_a(t), t, z_m) - \epsilon_{\theta_a}(z_a(t), t, \emptyset))$$
(7)

Results: Motion-to-Music

			40		Subset				
	\wedge		35	F1↑	HSD↓	BHS↑	CSD↓	BCS↑	Metrics
Diversity LORIS			30	57.5	15.0	41.0	6.9	96.4	Foley
 Diversity_LORIS Diversity Ours 		/ /	25	62.6	18.6	46.2	6.4	97.1	CMŤ
+ FAD_LORIS			20	93.1	19.0	88.7	9.4	95.6	D2MGAN
→ FAD_Ours	* -		15	92.7	18.1	89.3	9.1	96.5	CDCD
*	*		10	94.5	13.9	90.8	6.1	98.6	LORIS
***			5	98.1	2.8	98.6	5.2	97.5	Ours
FS25 FS50	FE25 FE50	NCE	0						
	FE25 FE50	NCE						1	

Table 2: Motion-to-music with **beat-matching** metrics. Figure 3: Motion-to-music with **generation**

Subset	Floor Exercise-25s Flo							floor Exercise-50s			
Metrics	BCS↑	CSD↓	BHS↑	HSD↓	F1↑	BCS↑	CSD↓	BHS↑	HSD↓	F1↑	
Foley	36.0	36.2	32.3	30.7	34.1	32.6	38.0	28.4	32.5	30.4	
CMT	46.4	30.1	57.4	29.8	51.3	42.3	32.0	53.8	31.7	47.4	
D2MGAN	45.3	27.7	58.7	30.1	51.1	41.9	29.2	54.7	32.7	47.5	
CDCD	49.0	21.1	61.0	27.0	54.3	45.9	23.8	57.5	29.3	51.0	
LORIS	58.8	19.4	67.1	21.1	62.7	54.7	21.6	63.8	24.5	58.9	
Ours	66.6	14.3	76.9	19.1	71.4	62.7	24.0	68.1	20.2	65.3	

Table 3: Results on the Floor Exercise dataset with **beat-matching** metrics.

Results: Music-to-Motion

Subset		AIS	T++ Dan	ice		BHS Dance					
Metrics	BCS↑	CSD↓	BHS↑	HSD↓	$F1\uparrow BCS\uparrow$	CSD↓	BHS↑	HSD↓	F1↑		
D2M	23.7	13.8	42.8	23.6	30.5 35.1	15.9	57.5	35.0	43.6		
DiffGesture	28.5	16.7	40.4	25.7	33.4 42.8	21.3	61.1	23.9	50.3		
Ours	39.2	10.2	56.3	12.0	46.2 47.9	8.4	78.5	12.1	59.5		

Table 5: Results on the AIST++ Dance and BHS Dance datasets with **beat-matching** metrics.

Subset		AIST++ D	ance		BHS Dance				
Metrics	FID↓	Diversity↑	Mean KLD↓	FID↓	Diversity↑	Mean KLD↓			
D2M	17.3	46.2	14.5	11.6	55.9	7.4			
DiffGesture	18.6	37.1	12.6	13.8	38.9	7.0			
Ours	7.3	52.7	4.9	6.5	67.4	4.2			

Table 6: Results on the AIST++ Dance and BHS Dance datasets with generation quality metrics.

Results: Ablations

Id	Method	Music M FAD↓	letrics F1 ↑	Motion FID ↓	Metrics F1↑
#1	Ours w/ Directional Vectors	10.9	91.4	14.7	38.0
#2	Ours w/o Mel-spectrogram	12.8	95.6	9.5	41.6
#3	Ours w/o Rhythmic Contrastive Learning (RCL)	8.5	93.1	8.1	37.9
#4	Ours w/o Diffusion Transformer (DiT)	11.0	95.8	11.6	41.4
#5	Ours (Joint Generation)	8.1	96.5	8.8	45.4
#6	Ours (Joint Generation&Variable Length)	9.1	97.6	8.5	49.6
#7	Ours (Cross Generation)	8.9	98.1	7.3	46.2

Table 7: Ablation study on motion-to-music and music-to-motion generations. We use the FAD/FID as the quality assessment and the F1 score as the beat-matching assessment.

